GCSE Mathematics Practice Tests: Set 2

Paper 1H (Non-calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Instructions

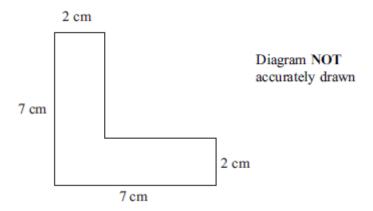
- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- · Calculators must not be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- · Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.



Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1.

The diagram shows the cross-section of a solid prism.

The length of the prism is 2 m.

The prism is made from metal.

The density of the metal is 8 grams per cm³.

Work out the mass of the prism.

(Total 5 marks)

(Total 4 ma	(1) arks)
If your assumption is wrong, how would this affect your answer to part (a)?	
(b) Write down one assumption you made in your answer to part (a).	(0)
	(3)
(a) Use this information to estimate the time Dylan will arrive in Newcastle. You must show how you get your answer.	
It takes him $1\frac{1}{2}$ hours to travel the first 90 miles.	
Dylan leaves London at 09:30	
Dylan is driving from London to Newcastle. He will drive a total distance of 240 miles.	

Arwen buys a car for £4000	
The value of the car depreciates by 10% each year.	
Work out the value of the car after two years.	
	£
	I
	(Total 3 marks)

4. Suha has a full 600 m*l* bottle of wallpaper remover. She is going to mix some of the wallpaper remover with water.

Here is the information on the label of the bottle.

Mix $\frac{1}{4}$ of the wallpaper remover with 4500 m*l* of water

Suha is going to use 750 ml of water.

How many millilitres of wallpaper remover should Suha use? You must show your working.

	,
 	m <i>l</i>

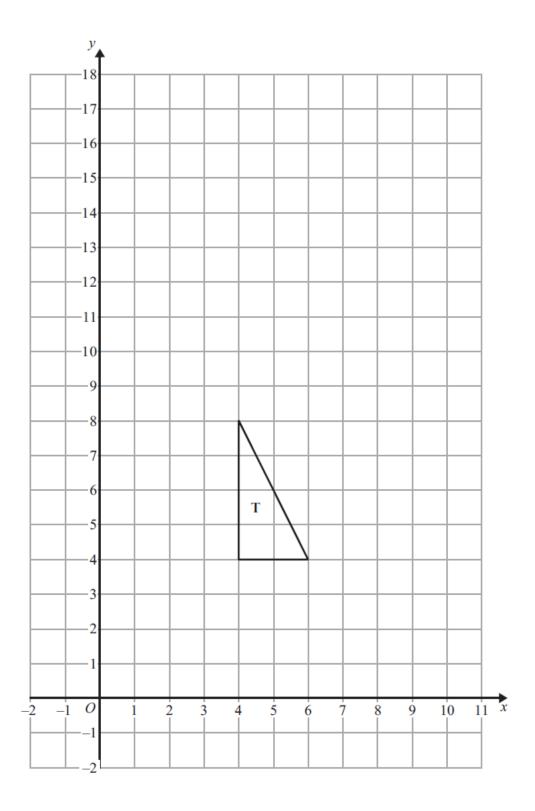
(Total 4 marks)

There are 18 pac						
		ll the 30 packets and the 18 packets is 10		s 14.		
Work out the mean number of sweets in the boxes.						
					(Total 2 mar	
					(Total 3 mar	
Write the follow Start with the sn	ring numbers in o	order of size.				
	nallest number.	order of size. 3800×10^{-4}	380	0.38×10^{-1}		
	nallest number.		380	0.38×10^{-1}		
	nallest number.		380	0.38×10^{-1}		
	nallest number.		380	0.38×10^{-1}		
	nallest number.		380	0.38×10^{-1}		
	nallest number.		380	0.38×10^{-1}		

7.	Find the value of n so that	$\frac{2^6 \times 2^3}{2^n}$	$= 2^{\frac{1}{2}}$
----	-------------------------------	------------------------------	---------------------

(Total 2 marks)

8.
$$-6 \le 2y < 5$$

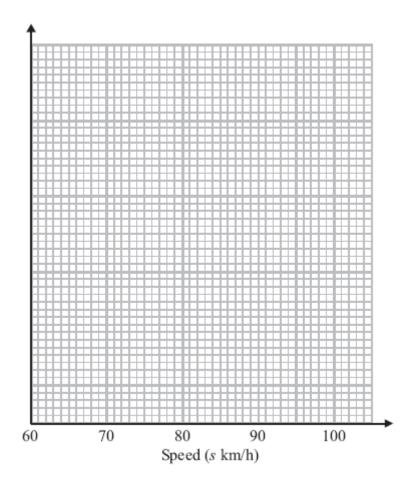

y is an integer.

Write down all the possible values of y.

.....

(Total 3 marks)

x and y are two numbers each greater than 3
The Highest Common Factor (HCF) of x and y is 3 The Lowest Common Multiple (LCM) of x and y is 36
Find x and y .
(Total 2 marks)


Enlarge triangle **T** by a scale factor $\frac{1}{2}$, centre (2, 0).

(Total 3 marks)

11. The table gives some information about the speeds, in km/h, of 100 cars.

Speed(s km/h)	Frequency
$60 < s \le 65$	15
$65 < s \le 70$	25
$70 < s \le 80$	36
$80 < s \le 100$	24

(a) On the grid, draw a histogram for the information in the table.

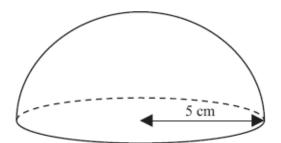
(b) Work out an estimate for the number of cars with a speed of more than 85 km/h.

			(2)

(Total 5 marks)

(3)

12	(2)	Simplify fully	$x^2 + 3x - 4$
14,	(a)	Simplify fully	$2x^2 - 5x + 3$

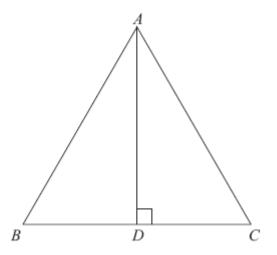

(3)

(b) Write $\frac{4}{x+2} + \frac{3}{x-2}$ as a single fraction in its simplest form.

(3)

(Total 6 marks)

13. The diagram shows a solid hemisphere of radius 5 cm.


Surface area of sphere = $4\pi r^2$

Find the **total** surface area of the solid hemisphere. Give your answer in terms of π .

 cm ²
(Total 3 marks)

There are 20 counters in a bag.
8 of the counters are yellow. 12 of the counters are green.
Asif takes at random two of the counters.
Work out the probability that the two counters are different colours.
(Total 4 marks)

15.	n is an integer greater than 1.
	Use algebra to show that $(n^2 - 1) + (n - 1)^2$ is always equal to an even number.
	/m
	(Total 4 marks)

ABC is an equilateral triangle.

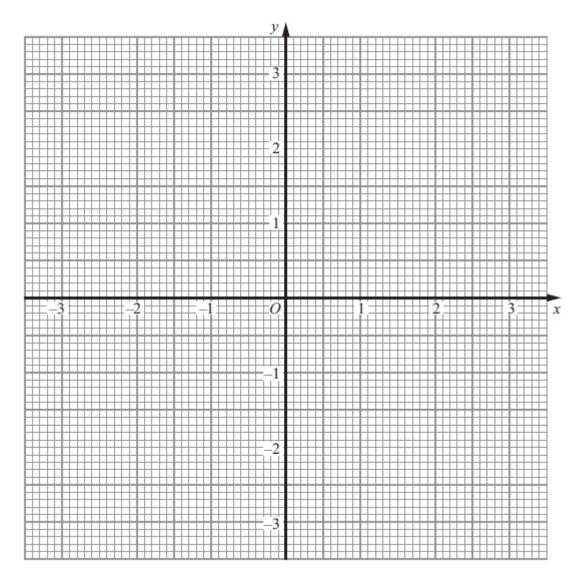
D lies on BC.

AD is perpendicular to BC.

(a) Prove that triangle ADC is congruent to triangle ADB.

(3)

ı

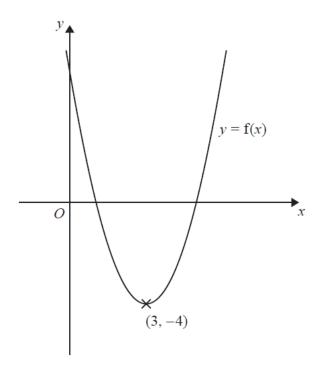

(b) Hence, prove that $BD = \frac{1}{2}AB$.

(2)

(Total 5 marks)

(b)	Expand and simplify $(2 + \sqrt{10})($	$\sqrt{5} + \sqrt{20}$)		(2)
(b)	Expand and simplify $(2 + \sqrt{10})($	$\sqrt{5} + \sqrt{20}$		(2)
(b)	Expand and simplify $(2 + \sqrt{10})($	$\sqrt{5} + \sqrt{20}$)		(2)
(b)	Expand and simplify $(2 + \sqrt{10})($	$\sqrt{5} + \sqrt{20}$)		(2)
(b)	Expand and simplify $(2 + \sqrt{10})($	$\sqrt{5} + \sqrt{20}$		(2)
				(2)
(a)	Rationalise the denominator of	$\frac{6}{\sqrt{5}}$		
	(a)	(a) Rationalise the denominator of	(a) Rationalise the denominator of $\frac{6}{\sqrt{5}}$	(a) Rationalise the denominator of $\frac{6}{\sqrt{5}}$

18. (a) Construct the graph of $x^2 + y^2 = 9$


- **(2)**
- (b) By drawing the line x + y = 1 on the grid, solve the equations $x^2 + y^2 = 9$ x + y = 1

x =, *y* =

or $x = \dots, y = \dots$

(Total 5 marks)

P is inversely proportional to V.	
When $V = 8$, $P = 5$	
(a) Find a formula for P in terms of V .	
	$P = \dots (3)$
(b) Calculate the value of P when $V = 2$	
	(1)
	(Total 4 marks)

The diagram shows part of the curve with equation y = f(x). The coordinates of the minimum point of this curve are (3, -4).

Write down the coordinates of the minimum point of the curve with equation

(i) y = f(x) + 3

(`
(,	····· <i>)</i>

(ii) y = f(2x)

<i>(</i>	,

(iii) y = f(-x)

(`
(,)

(Total 3 marks)

(Total	4 marks)
Give your equation in the form $ax + by = c$ where a , b and c are integers.	
Find an equation of the line that passes through C and is perpendicular to AB .	
C has coordinates (5, 2)	
B has coordinates (1, 6)	
D1	

TOTAL FOR PAPER IS 80 MARKS

21. A has coordinates (-3, 0)