

Subject	Chemistry
Class/ Section	Yr 9 A-F
Week	Week 5 - 26 th September to 30 th September
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	Separations of mixtures – Chromatography and drinking water
Key Vocabulary	Rf values, mobile and stationary phase chromatogram, aquifers, sedimentation, chlorination and desalination
	Week 5 - Lesson 1 and 2 Chromatography
	Specific Learning objectives
	C2.7 Explain the experimental techniques for separation of mixtures by paper chromatography.
	C2.9 Describe paper chromatography as the separation of mixtures of soluble substances by running a solvent (mobile phase) through the mixture on the paper (the paper contains the stationary phase), which causes the substances to move at different rates over the paper.
	C2.10 Interpret a paper chromatogram:
	(a) to distinguish between pure and impure substances
	(b) to identify substances by comparison with known
	substances
	(c) to identify substances by calculation and use of
	Rf values.
	Specific Intended Learning Outcomes
	Describe how some mixtures can be separated by

	chromatography Identify pure substances and mixtures on chromatograms. Identify substances that are identical on chromatograms. Interpret diagrams showing how chromatography is done. Explain how substances can be separated by chromatography. Calculate Rf values and use them to identify substances.
	Tasks
Tasks	1. List the apparatus used for paper chromatography and
	identify the stationary and mobile phase.
	2. Explain how different components of mixtures interact
	with mobile and stationary phases
	3. Interpret a chromatogram
	4. Calculate Rf value
	5. Test the purity by analysing the chromatogram
Assessment Criteria/	Assessment Criteria/Essential questions
Essential questions	Support: How can chromatography used to separate mixtures
	Stratche Coloulate the Df value for each due in the inly from the
	Stretch: Calculate the Rf value for each dye in the ink from the chromatogram
	Extend : Draw a chromatogram using the solubilities of some different food colourings. Explain what you would see on the chromatogram.
Resources	Resources
	Edexcel GCSE (9-1) students book,
	Doddle interactive presentation worksheets SC2c. for class work
	A power point to display learning objectives, tasks and images
	Lesson 3 - Drinking water
	 Specific Learning objectives Describe how a) waste and ground water can be made potable, including the need for sedimentation, filtration and chlorination. b) seawater can be made potable by using distillation. c) water used in analysis must not contain any dissolved salts. Evaluate the risks in a practical procedure and suggest suitable precautions for a range of practicals, Specific Intended Learning Outcomes
	Explain why water used in chemical analysis must not contain dissolved salts.

	Describe how fresh water can be produced from seawater.
	Describe the steps needed to make fresh water suitable for drinking. Suggest how to purify water when you know what it contains.
	Evaluate the hazards and control the risks present when purifying
	water.
Tasks	Tasks
	1. Watch the video of simple distillation (using boiling water and a cold surface) and describe desalination and answer questions 1 and 2 in the text book.
	2. List the uses of tap water in chemical lab and explain why tap water is not used for chemical analysis (que. 3)
	3. Using the annotated diagram given in text book summarising the main stages in water treatment.
	4. Answer questions 4-6 in the textbook
	5. Choose one hazard of using chlorine gas. Explain how the risk of harm from this hazard can be reduced for workers at a water treatment plant.
	Assessment Criteria/Essential questions
Assessment Criteria/ Essential questions	Support : Draw a flow chart to describe the two methods to describe how water can be made fit to drink
	Stretch: Question E1 and E2- A bottle of water has a label on it saying 'Suitable for chemical analysis'. Describe how this water has been produced. Explain how you would check to see if this water really is suitable for analysis.
	Extend : What is coagulation in water treatment plant? Name a common coagulant used in water treatment plant
Resources	<u>Resources</u>
	Edexcel GCSE (9-1) students book , Doddle interactive presentation
	worksheets SC2e for class work A power point to display learning objectives, tasks and images

مدرسة القديسة مريم الكاثوليكية الثانوية – دبي ST. MARY'S CATHOLIC HIGH SCHOOL, DUBAI

Subject	Chemistry
Class/ Section	Year 10
Week	Week 5 -26 th Sept- 30 th Sept
Work send to students by	Google classroom
Total No. of lessons per week	4
Unit/Topic	SC8 Acids and Alkalis
Key Vocabulary	Acidic, alkaline, neutral, pH scale, indicators, polyatomic ions, aqueous solution, universal indicator
Specific Learning objectives	 Lesson 1- SC8a Acids, Alkalis and Indicators Recall that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide ions. Recall that a neutral solution has a pH of 7 and that acidic solutions
	 Recall that a neutral solution has a pH of 7 and that acidic solutions have lower pH values and alkaline solutions higher pH values. Recall the effect of acids and alkalis on indicators, including litmus, methyl orange and phenolphthalein. Recall that the higher the concentration of hydrogen ions in an acidic solution, the lower the pH; and the higher the concentration of hydroxide ions in an alkaline solution, the higher the pH.
<u>Specific Intended Learning</u> <u>Outcomes</u>	 Define acid & alkali and Classify the nature of substances as acidic , basic or neutral. Define pH and understand the pH of different types of solutions. Define & cite some examples indicators and identify different types of acids and alkalis using different types of indicators. Analyse and establish the relationship between hydrogen ion concentration in a solution and the pH of the solution
Tasks	 Recall that all aqueous solutions are either acidic, alkaline or neutral. Introduce in general the concept of what acids and bases are through <i>Doodle ppt acids and alkalis slides 3&4</i>. Ask the meaning of some hazard symbols. Children identify hazard symbols and name some household products which are acidic alkaline or neutral through Q1-3 on pg 52 of T.Bk Review the concept of pH scale and different indicators using <i>Doodle</i> <i>ppt acids and alkalis slides 5-9</i>. Discuss the colour change that indicates if a liquid is acidic alkaline or neutral. Children give examples and formulae of some common acids and alkalis and observe what is common in formulae of all acids and all

	 alkalis. 5. Explain the relationship between the concentration of H or OH ions in the aqueous solutions and the strength of acid or alkali. 6. Through diagram of ions in aqueous solution children identify if something is strong or weak acid or alkali.
Assessment Criteria/ Essential questions	 Support – Identify hazard symbols and differentiate between acids and alkalis on the basis of ions they contain. Stretch- Describe an acid or alkali based on the pH it has and tests using different indicators. Extend- Explain how the strength of acid or alkali change by changing the concentration of H and OH in the solutions.
Resources	Edexcel GCSE 9-1 chemistry Text Book, ppt on acids and alkalis. Doodle ppt Acids and Alkalis.

Key Vocabulary	Concentrated, dilute, pH meter, strong and weak acids, dissociate
Specific Learning objectives	 Lesson 2- SC8b Looking at acids Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of the solution decreases by 1. Explain the terms dilute and concentrated, with respect to amount of substances in solution. Explain the terms weak and strong acids, with respect to the degree of dissociation into ions.
<u>Specific Intended Learning</u> <u>Outcomes</u>	 Correlate that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of the solution decreases by 1. Understand the unit of concentration. Differentiate between dilute and concentrated, with respect to amount of substances in solution. Define weak and strong acid and cite some examples for weak and strong acids. Explain the terms dilute and concentrated, with respect to amount of substances in solution.
Tasks	 Recall what concentrated and dilute solutions are. Through some examples explain how to calculate the concentration and establish its unit. Use <i>Doodle ppt Strong and Weak acids slides 4-7</i>. Children calculate the concentration of sulphuric acid through question1. Correlate that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of the solution decreases by 1. Use <i>Doodle ppt Strong and Weak acids slides12-14</i>. Children calculate the pH and strength of solution through questions 3-5. Explain the difference between strong and weak acids through the concept of dissociation and give examples of the same . <i>Doodle ppt</i>

	Strong and Weak acids slides 9-10.6. Question 7 helps them to understand how to compare a strong and weak acids.
Assessment Criteria/ Essential questions	 Support – Calculate the concentration of an acid using the given data Stretch- Describe the difference between strong and weak acids and give examples through q 6 & 7 pg 55 of T.Bk Extend- Q E1 Pg 55 Explain how concentrated solution of a weak acid could have the same pH and similar reactions to a dilute solution of a strong acid
Resources	Edexcel GCSE 9-1 chemistry Text Book, AT ppt on strong and weak acids, Doodle ppt strong and weak acids.

Key Vocabulary	Bases, neutralize, salts, state symbol, filter, crystallization
	Lesson 3 and 4 - SC8c Bases and Salts
<u>Specific Learning objectives</u>	 Recall that a base is any substance that reacts with an acid to form a salt and water only. Explain the general reactions of aqueous solutions of acids with metal oxides to produce salts Describe a neutralisation reaction as a reaction between an acid and a base. Explain why, if soluble salts are prepared from an acid and an insoluble reactant: a. excess of the reactant is added b. the excess reactant is removed c. the solution remaining is only salt and water.
<u>Specific Intended Learning</u> <u>Outcomes</u>	 Define base and explain the different types of bases. Define alkali and differentiate between alkali and base. Write word equation and balanced symbol equation for the reaction. Define neutralization reaction. Write word equation and balanced symbol equation for the reaction. Describe the steps involved in preparing a soluble salt from an acid and an insoluble reactant. Explain why an excess of insoluble reactant is used when preparing a soluble salt and why the excess reactant is removed when preparing a soluble salt. Explain why the remaining solution contains only a salt and water, when preparing a soluble salt from an acid and an insoluble reactant.
Tasks	 Recall what bases and alkalis are and ask some examples of weak and strong alkalis and their pH. Review neutralization reaction with both metal oxides and alkalis as examples using <i>Doodle ppt</i> <i>Neutralization slides3-6</i>. Review writing word equations for some reactions. Explain how to write a formula equation and write state symbols in them. Children answer questions 1-4 on page 56-57 of text book. Using <i>AT Presentation</i> forming soluble salts explain how a soluble salt is produced using an acid and an insoluble reactant like metal

	 oxide. Alternatively use <i>Doodle ppt Neutralization slides12-14</i>. 5. Emphasise on the steps and explain the importance of using excess of the insoluble salt and removing the excess reactant by filtration. 6. Question 5a-e helps the children to revise different steps of the method of preparing soluble salts.
Assessment Criteria/ Essential questions	 Support – Questions 1-4 on page 56-57 of text book helps them to understand how to write a formula equation and express state symbols of the reactants and products. Stretch- Describe different steps of the method of preparing soluble salts through Question 5a-e Extend -Justify why reaction of an acid with metal oxides is a neutralization reaction using hydrogen ion concept.
Resources	Edexcel GCSE 9-1 chemistry Text Book, AT ppt. on formation of soluble salts, Doodle ppt. Neutralization.

مدرسة القديسة مريم الكاثوليكية الثانوية – دبي ST. MARY'S CATHOLIC HIGH SCHOOL, DUBAI

Subject	Chemistry
Class/ Section	Yr 11 A-F
Week	Week 5: 26 th Sept to 30 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	5
Unit/Topic	Hydrocarbons
Key Vocabulary	crude oil, hydrocarbons, petrochemicals, fossil fuels, fractional distillation, fractionating column, viscosity

Lesson -

Live Zoom lesson along with face to face instruction for students present on a particular day

Work will be assigned in google classroom which will be matched to the students' ability.

Lesson 1 & 2:

Specific Learning objectives:

- Recall that hydrocarbons are compounds that contain carbon and hydrogen only.
- Describe crude oil as a complex mixture of hydrocarbons
- Recall that petrol, kerosene and diesel oil are non-renewable fossil fuels obtained from crude oil and methane is a non-renewable fossil fuel found in natural gas.
- Describe and explain the separation of crude oil into simpler, more useful mixtures by the process of fractional distillation.
- Recall the names and uses of the following fractions: gases, petrol, kerosene, diesel, fuel oil and bitumen.
- Explain how hydrocarbons in different fractions differ from each other

Specific Intended Learning Outcomes:

- Describe that the chemicals obtained from crude oil are called hydrocarbons and that a hydrocarbon is a molecule consisting of carbon and hydrogen atoms only.
- Understand the terms fossil fuel, renewable resource and non-renewable resource.
- Explain the process of fractional distillation to separate the crude oil into useful fractions.
- Describe the relationship between molecule size and boiling point, viscosity, ease of ignition, and flammability.
- Analyses given data on organic chemicals that come from crude oil, recognize their uses in the modern chemical industry and evaluate the environmental implications of oil spillages.

Tasks:

1. Students to predict the meaning of the term Hydrocarbon'. 2. Students to compare and contrast renewable and non-renewable resources. 3 Show an image of Crude oil and ask students which method they would use to separate the different fractions from crude oil. 4. Students complete Worksheet SC20b.2, which involves a card sort. They match fractions to their exit position from a fractionating column, then match the uses to the fractions. Assessment Criteria/ **Essential questions:** Support: Why are crude oil and natural gas useful? Stretch: Why is crude oil an important finite source of non-renewable substances? Extend: Describe the relationship between the number of carbon atoms in a hydrocarbon molecule and the physical properties of the hydrocarbon. Edexcel GCSE (9-1)Chemistry textbook. Interactive power point from **Resources:** Board works, Video

	Lesson 3:
	Specific Learning objectives:
	• Explain an homologous series as a series of compounds which:
	a have the same general formula
	b differ by CH ₂ in molecular formulae from neighbouring compounds
	c show a gradual variation in physical properties, as exemplified by their boiling points
	d have similar chemical properties.
	• Recall the formulae of molecules of the alkanes and alkenes and draw the structures of these molecules, showing all covalent bonds.
	• Explain why the alkanes are saturated hydrocarbons and alkenes are unsaturated hydrocarbons,
	Specific Intended Learning Outcomes:
	• Define terms saturated and unsaturated as applied to alkanes and alkenes.
	• State the names, formulae and structures of the first four members of
	the alkane and alkene homologous series.Identify general formula for homologous series of hydrocarbons
	 Classify some unknown compounds from their molecular and/or structural formula into alkane and alkene.
	 Draw the structures of isomers of the given alkane or alkene
	Tasks:
	1. Students write the names, molecular fomulae and structures of the models of alkanes and alkenes.
	2. Students answer Qs from text bk pg,154-155
	3 They draw the structures of isomers of the given alkane or alkene.
	4. Students answer Qs from text bk pg,172-173
Assessment Criteria/	Support: What are the features of a homologous series?
Essential questions:	Stretch: Describe how the boiling points of alkanes change as the number of carbon atoms in the molecules changes.
	Extend: Represent a five-carbon alkene using structural and molecular formulae. Suggest ways in which isomers of this hydrocarbon may be different.
Resources:	Edexcel GCSE (9-1)Chemistry textbook. Interactive power point from Board works, Video

	Lesson 4:
	Specific Learning objectives:
	 Describe how the complete combustion of alkanes and alkenes involves the oxidation of the hydrocarbons to produce carbon dioxide and water Explain how bromine water is used to distinguish between alkanes and alkenes.
	 Specific Intended Learning Outcomes: Understand that the complete combustion of hydrocarbons produces carbon dioxide and water and that the incomplete combustion of hydrocarbons produces carbon monoxide and water and sometimes carbon (soot)
	 Explains the toxic nature of carbon monoxide with respect to its ability to bind to blood. Plan an experiment to determine the presence of C=C in a variety of organic compounds using bromine water.
	 <u>Tasks:</u> 1. Students write balanced chemical equations for complete and incomplete combustion of alkanes and research on the harmful effects of incomplete combustion. 2. Students answer Qs from text bk pg,156-157 Students relate the reactivity of alkenes to the presence of a double bond. They write balanced chemical equations for the addition reactions of alkenes. 3. Students answer Qs from text bk pg,174-175
Assessment Criteria/ Essential questions:	 Support – What are the products of complete combustion of propane in oxygen? Stretch – Explain why ethane does not undergo addition reactions. Extend – But-2-ene reacts with bromine. Draw out the equation for this reaction using structural formulae and name the product.
Resources:	Edexcel GCSE (9-1)Chemistry textbook. Interactive power point from Board works, Video
	Lesson 5: Specific Learning objectives:
	 Explain how impurities in some hydrocarbon fuels result in the production of sulfur dioxide. Explain some problems associated with acid rain caused when sulfur dioxide dissolves in rain water. Explain why, when fuels are burned in engines, oxygen and nitrogen
	 can react together at high temperatures to produce oxides of nitrogen, which are pollutants Specific Intended Learning Outcomes: Know that burning fuels releases carbon dioxide, water (vapour), carbon monoxide, sulphur dioxide and oxides of nitrogen into the
	atmosphere.

	 Understand that sulfur dioxide from the combustion of fossil fuels reacts with water in the air to form acid rain Describe the socio-economic and environmental effects of acid rain to include corrosion of limestone buildings and statues, killing fish in rivers and lakes and defoliating trees. Describe the measures used to prevent acid rain, including removing sulfur from fuels before combustion burning less fossil fuels, removing sulfur dioxide from industrial and vehicle emissions. 	
	Tasks:	
	1. Students watch a video of burning of Sulphur in oxygen, dissolving the oxide in water and testing the resulting solution with Universal indicator paper.	
	 Students relate the observation to acid rain caused by oxides of sulphur and nitrogen, produced by burning of fossil fuels. Students watch the video on causes and effects of acid rain. Students write balanced chemical equations for formation of sulphurous and sulphuric acid. Students answer Qs from text bk pg,158-159 	
Assessment Criteria/ Essential questions:	Support: Write a balanced equation for the reaction between sulphur and oxygen.	
	Stretch: Explain why the use of some hydrocarbon fuels causes the production of sulphur dioxide and oxides of nitrogen.	
	Extend: Catalytic converters can reduce nitrogen dioxide, forming nitrogen and oxygen. Write a balanced equation for this reaction.	
Resources:	Edexcel GCSE (9-1)Chemistry textbook. Interactive power point from Board works, Video	

مدرسة القديسة مريم الكاثوليكية الثانوية – دبي ST. MARY'S CATHOLIC HIGH SCHOOL, DUBAI

Subject	Chemistry	
Class/ Section	Yr 12 – Batch A/B	
Week	Week 5: 26 th Sept to 30 th September, 2021	
Work send to		
students by Total number of	Google classroom	
lessons per week	3	
Unit/Topic	2. Chemical Bonding and Structure	
Key Vocabulary	Metallic bonding, electrical and thermal conductivity, malleability and ductility, delocalised electrons, cations, ionic bond, charge, bond strength, ionic radii, brittle. solubility	
Lesson -	Lesson 1:	
Live Zoom lesson	Specific Learning objectives:	
along with face to face instruction for	• Know that metallic bonding is the strong electrostatic attraction between metal ions and the delocalised electrons	
students present on	 Explain the properties of metals based on structure and bonding 	
a particular day	 Explain the trends in the melting points of metals across a period 	
	and down the group	
Work will be		
assigned in google classroom which	Specific Intended Learning Outcomes:	
will be matched to	Describe metallic structure	
the students'	 Define metallic bond Reason why most metals have high m.p, are malleable, ductile and 	
ability.	good electrical and thermal conductors.	
	 Reason why melting point increases across a period but decreases 	
	down the group	
	Tasks: 1. Students recall metallic structure, metallic bond and properties of metals.	
	 Students recan metanic structure, metanic bond and properties of metans. Teacher asks probing Qs to enable students to reason the properties of 	
	metals and to deduce the relationship between number of delocalised	
	electrons per ion and the size of the cation, with melting point of a metal.	
	3. Students answer Qs on pg. 37	
	Support Draw a diagram to correspond matallia structure and define	
Assessment	Support – Draw a diagram to represent metallic structure and define metallic bond.	
Criteria/ Essential	Stretch - Why does Aluminium have a higher melting point than sodium	
questions:	and magnesium?	
	Extend – Research on the properties exhibited by Transition metals.	
	Edexcel AS/A level chemistry 1 Textbook	
Resources:	Interactive power point from Board works	
	Video	

	Lesson 2 & 3:	
	Specific Learning objectives:	
	• Know that ionic bonding is the strong electrostatic attraction	
	between oppositely charged ions	
	• Understand the effects that ionic radius and ionic charge have on	
	the strength of ionic bonding.	
	 Be able to draw electronic configuration diagrams of cations and anions using dot-and-cross diagrams 	
	 Understand reasons for the trends in ionic radii down a group and 	
	for a set of isoelectronic ions, e.g. N^{3-} to Al^{3+}	
	• Understand that the physical properties of ionic compounds and the	
	migration of ions provide evidence for the existence of ions	
	Specific Intended Learning Outcomes:	
	• Review that ionic compounds are formed by transfer of electrons where the resulting ions have noble gas configuration.	
	 Reasons out why magnesium oxide has stronger ionic bonding than calcium oxide. 	
	• Draw the dot-and-cross diagram of a known compound (e.g. sodium chloride) and use it to predict the dot-and-cross diagram for less	
	familiar compounds (e.g. potassium fluoride).	
	• Predict the trends in ionic radii in a group and in a period.	
	• Draw the diagram of electrolysis apparatus and show the movement of migration of ions.	
	 Predict the colours at each electrode 	
	Tasks: 1. Students recall the definition of ionic bond.	
	2. Teacher displays a table of size of cations and the amount of energy	
	required to separate the ions to infinity (kJ/mol)	
	3. Students deduce the relationship between the strength of ionic bond and charge and size of ions.	
	4. Teacher explains the trends in ionic radii down a group and for a set of isoelectronic ions.	
	5. Students deduce the properties of ionic compounds based on structure	
	and bonding. 6. Students draw dot and cross diagrams for different ionic compounds.	
	7. Teacher explains the evidence for the existence of ions, based on	
	electrolysis experiment.	
Assessment		
Criteria/Essential	Support – Define ionic bond	
questions:	Stretch – Suggest why the strength of ionic bonding is greater in sodium	
	fluoride than in potassium iodide.	
	Extend – Explain the trend in the ionic radii of $Ca^{2+} > Mg^{2+} > Be^{2+}$	
Resources:	Edexcel AS/A level chemistry 1 Textbook	
	Interactive power point from Board works	
	Video	

مدرسة القديسة مريم الكاثوليكية الثانوية – دبي ST. MARY'S CATHOLIC HIGH SCHOOL, DUBAI

Subject	Chemistry
Class/ Section	Year 12 - Batch 1 and 2
Week	Week 5 – 26 th September – 30 th Sept
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	Topic 5 – Formulae , equations and amount of substance
Key Vocabulary	Moles , Relative Atomic mass , parts per million
Lessons 1,2,3 –Live Zoom lesson along with face to face instruction for students present on a particular day	Lesson 1 – Reactions <u>Specific Learning objectives</u> Reinforce the concept of titration.
day Work will be assigned in google classroom which will be matched to the students ability.	Reinforce the concept of titration.Specific Intended Learning OutcomesSolve different questions based on titration from past papersTasksRecall the apparatus and safety precautions for the titration experiment. Solve problems based on titration.Assessment Criteria/ Essential questionsSupport: Solve problems based on acid alkali reaction.Stretch: Solve problems on redox titrationExtend: Write the procedure for the redox titrationLesson 2 and 3 - Specific Learning objectives Solve the problems based on back titration.Specific Intended Learning Outcomes

	Define the concept of back titration.
	Únderstand how it is different from normal titration
	Tasks:
	Discuss the concept of back titration.
	Watch the video of back titration.
	Solve problems based on back titration.
	Assessment Criteria/Essential questions
	Support: Write the equations involved in back titration.
	Stretch: Calculate the moles in initial and final stageof back titration.
Resources	Extend: Calculate the percentage purity if metal or metal
	carbonate in the given question.
	Edaycal A layel Chamistry 2 Taythaak
	Edexcel A level Chemistry 2 Textbook
	Interactive power point from Board works

Subject	Chemistry
Class/ Section	Year 13 - Batch 1 and 2
Week	Week 5 – 26 th September – 30 th Sept
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	Topic 15 Transition Metals
Key Vocabulary	Vanadium , electrode potential

Lessons 1,2,3 –Live Zoom lesson along with face to face instruction for students present on a particular day	Lesson 1 – <u>Specific Learning objectives</u> Know the colours of the oxidation states of vanadium (+5, +4, +3 and +2) in its compounds.
Work will be assigned in google classroom which will be matched to the students ability.	Specific Intended Learning Outcomes Discuss the colours of vanadium compounds in the different oxidation states. Find the oxidation state of vanadium in different vanadium compounds.
	Tasks: Watch the colours of vanadium compounds. Discuss the situation for which the vanadium compounds react with other metals and get reduced to other oxidation state.
Assessment Criteria/ Essential questions	 Support: Identify the colours of vanadium ions. Stretch: Explain why tin cannot act as a reducing agent with dioxovandium ions. Extend: Explain whether copper(II) ions can be used to oxidise oxovandium to dioxovanadium ions.
Resources	Edexcel A level Chemistry 2 Textbook Interactive power point from Board works
	Lesson 2 and 3 – Reactions of Vanadium Specific Learning objectives Understand redox reactions for the interconversion of the oxidation states of vanadium (+5, +4, +3 and +2), in terms of the relevant E^0 values.
	Specific Intended Learning Outcomes Discuss the interconversion reactions of vanadium in different oxidation states based on the E^0 values
Aggeggment Criterial	Identify the colour change in each reactions of vanadium. Tasks: Discuss the electrode potential of different half equations with vanadium. Write the reactions with vanadium and other metals Support : Write the configuration for different ions of vanadium.
Assessment Criteria/ Essential questions	Stretch: Calculate the cell emf for different reactions of vanadium and other metals.
	Extend: Predict whether a reaction between vanadium compound and other metals is feasible or not.
Resources	Edexcel A level Chemistry 2 Textbook Interactive power point from Board works

Subject	Chemistry
Class/ Section	Year 13
Week	Week 5 : 26 th September to 30 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	Acid-base equilibria
Key Vocabulary	Buffer solution
Lessons 1,2,3–Live Zoom lesson along with face to face instruction for students present on a particular day Work will be assigned in google classroom which will be matched to the students ability.	 Lesson 1&2 Buffer solutions Specific Learning objectives Reinforce the calculation of the pH of a buffer solution from the given data. Reinforce the calculation of the concentrations of solutions required to prepare a buffer solution of a given pH. Specific Intended Learning Outcomes. Define the term buffer solution Explain the uses of buffer solutions Explain how a buffer solution works Calculate the pH of buffer solutions Describe how a buffer solution can be made up for a given pH Explain the buffer system in the blood. Tasks: Review the principles behind making an acidic or a basic buffer solution. Explain how buffers resist small changes in pH. Research-Buffers in biological systems. Determine K_a from the pH of given buffer solutions, find the

Assessment Criteria/	 concentration of the different components needed to make a buffer of a given pH. 5.Answer the questions from textbook page no.42 Support: Calculate the pH of buffer solution. Stretch: calculate the concentrations of solutions required to
Essential questions	prepare a buffer solution of a given pH. Extended : Explain the role of carbonic acid–hydrogen carbonate as a buffer in the control of blood pH. Explain buffer action in food.
Resources	Edexcel A level Chemistry 2 textbook. Power point, Video
	Lesson 3: Enthalpy changes of neutralisation for strong and weak acids.
	Specific Learning objectives
	• Understand the roles of carbonic acid molecules and hydrogencarbonate ions in controlling the pH of blood
	 Understand why there is a difference in the standard enthalpy changes of neutralisation values for strong and weak acids.
	Specific Intended Learning Outcomes
	• Define enthalpy change of neutralisation.
	 Why the enthalpy change of neutralisation of a weak acid with a strong base is less than that for strong acid-strong base. Why the enthalpy change of neutralisation of HF by NaOHis greater than 57.6KJmol⁻¹
	Tasks:
	 Review buffer action. Discussion about what is happening in terms of the removal of a small number of H⁺ ions and the logarithmic nature of the pH
	scale.3. Give examples of buffers in biological systems – show how
	they work when small amounts of acid/alkali added 4. Compare the enthalpy changes of neutralization values of strong acid- strong base and strong acid – weak base/ strong base – weak acid.
	5. Answer textbook questions.
Assessment Criteria/ Essential questions	Support: Enthalpy change of neutralisation of strong acid with a strong base.Stretch: Enthalpy change of neutralisation for reaction between
	aq NH ₃ and aq HCl Extend: Enthalpy change of neutralisation of HCN with NH ₃
Resources	Edexcel A level Chemistry 2 textbook. Power point, Video