Physics Lesson Plan

Subject	Physics
Class/ Section	Yr 9 (A to F)
Week	Week 2 : 5 th September to 9 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	Conservation of Energy, Efficiency
Key Vocabulary	energy stores, energy transfers, joules, conservation of energy, efficiency, dissipated
Lesson 1,2,3 - Live Zoom lesson along with face to face	Lesson 1 & 2: Energy stores and energy transfers
instruction for students present on a particular day	 Specific Learning objectives: Discus what is meant by conservation of energy. Explain that where there are energy transfers in a closed system
Work will be assigned in google classroom which will be matched to the students' ability.	 there is no change to the total energy in that system. Explain, using examples, how all system changes energy is dissipated so that it is stored in less useful ways. Draw and interpret energy transfer diagrams. Draw and interpret diagrams to represent energy transfers.(Sankey diagrams)
	 Specific Intended Learning Outcomes: Explain, using examples, that energy is conserved. Interpret diagrams that represent energy transfers. Represent energy transfers using diagrams. (energy flow diagram) Interpret sankey diagrams that represent energy transfers. Represent energy transfers using sankey diagrams.
	Tasks:
	 Lesson - 1 Review law of conservation of energy Look at the bullet and the egg in photo A (pg 34) of the students book and draw an energy transfer diagram. Complete the questions (1-6) (pg 34 & 35) assigned from the Physics text book, in the notebook.

<u>Assessment</u> <u>Criteria/ Essential</u> <u>questions:</u>	 Lesson – 2 Complete the worksheet and Exam style questions (pg35) <u>Assessment Criteria/Essential questions</u>: When students have completed the worksheet questions, check which students have difficulty with which questions and use the level of problem to identify any areas for revisiting before moving on to the next topic. <u>Support:</u> Students could work in pairs to complete this activity. <u>Stretch :</u> Ask the students to sketch a sankey diagram for a kettle using the energy values given in question 4 (page 35) <u>Extend:</u> Ask the students to complete question E1 (pg 35) assigned from the Physics text book, in the graph book.
	the Thysics text book, in the graph book.
Resources:	Edexcel GCSE (9-1) Physics Textbook Ppt on the topic
	 Lesson 3: Efficiency Specific Learning objectives: i Discuss the ways of reducing unwanted energy transfer including through lubrication, thermal insulation. Recall and use the equation: efficiency = (useful energy transferred by the device) / (total energy supplied to the device). Explain how efficiency can be increased. Specific Intended Learning Outcomes: Explain some ways of reducing unwanted energy transfers in mechanical processes. Define what efficiency means. Explain how efficiency can be increased. Recall and use the equation for calculating energy efficiency. Tasks: Review change the subject of an equation and significant figures. Card sort activity (Pair work) – worksheet SP3b-2: Cut out all the cards and match each picture card with three other cards in efficiency. Complete the questions assigned from the Physics text book, in the notebook. Also complete the problems given in the worksheet.

Assessment	Support – Help students to work through the calculations.
<u>Criteria/Essential</u> <u>questions:</u>	Stretch - Look at the diagram D (pg 37) of the students book and explain why modern low-energy bulbs are more efficient.
	Extended - Ask students to work in group and answer for Textbook question E1 & answer exam style question.
Resources:	Edexcel GCSE (9-1) Physics Textbook Ppt on the topic

Lesson Plan

Subject	Physics
Class/ Section	Year 10
Week	Week 2 : 5 th September to 9 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	4
Unit/Topic	Radioactivity
Key Vocabulary	Nucleon, Isotopes, Kinetic theory, alpha particles ionisation, ionising radiation emission and absorption spectra

<u>Specific Learning</u> <u>objectives And learning</u> <u>outcomes</u>	Lesson 1. Inside atoms Specific Learning objectives
	Recall that the nucleus of each element has a characteristic positive charge, but that elements differ in mass by having different numbers of neutrons.
	Recall the relative masses and relative electric charges of protons, neutrons and electrons
	Recall that in an atom the number of protons equals the number of electrons and is therefore neutral.
	Describe the structure of nuclei of isotopes using the terms atomic (proton) number and mass (nucleon) number and using symbols in a format
	Specific Intended Learning Outcomes
	Tabulate the relative masses charges and location of the particles that make up atoms
	Define atomic number, mass number and nucleon number.
	Explain why the atom is electrically neutral
	Represent the mass number and atomic number in symbol form
	Define isotopes and identify the isotopes of different elements from te atom models and it's symbols
	Tasks:
Tasks	 Tabulate the relative mass, charges and position of protons, electrons and neutrons Write glossary definitions for these terms: atomic number, mass number and nucleon number
	 Group activity 3. Use periodic table and worksheet SP 6b.2 to workout atomic notation 4. Define isotopes and identify isotopes from atomic model images(ppt) and atomic notations (SP 6b.2 worksheet)
Assessment Criteria/ Essential questions	Support: Provide a worked out example to complete first few questions in
Essential questions	worksheet SP6b.2
	<pre>Stretch: Complete question E1 from students book Extend: What is carbon dating?</pre>

Resources	Edexcel GCSE (9-1) students book
	Interactive power point from Board works
	Worksheet SP 6b.2 (differentiated)
Specific Learning	
objectives And learning	Lesson 2 and 3 - Atom Models
outcomes	
	Specific Learning objectives
	Recall the typical size (order of magnitude) of atoms and small molecules.
	Describe how and why the atomic model has changed over time including reference to the plum pudding model and Rutherford alpha particle scattering leading to the Bohr model.
	Describe an atom with the nuclear radius much smaller than that of the atom.
	Specific Intended Learning Outcomes
	Recall Dalton's hard sphere model and explain how particle theory explain how solids have a fixed shape
	Compare the size of an atom and molecule Describe J. J. Thompson's plum pudding model and describe how this model explain that atoms have no overall charge.
	Compare the nuclear radius with radius of an atom
	Tasks
Task	 Lesson 2 1. Use doodle interactive slides to explain Dalton's atomic models (do question 1 in students book)
	 Use particle model to compare the size of an atom and molecule(Do question 3 in students book)
	 Demonstrate the image of plum pudding model, draw and label this structure in notebook Lesson 3
	 4. Watch the video -Rutherford's scattering experiment- Write down the observations and conclusions in the note book
	 Distinguish between Bohr's atom model and Rutherford's atom model

	 Read last paragraph in the text book and answer question 5 in students book
Assessment Criteria/ Essential questions	Support- Discuss students' observations Dalton's atom model plum pudding model and Rutherford's experiment and use questioning to help them to work out the conclusions
	Do questions 1-3 in the worksheet SP 6a.4
	Stretch: Ask students to write a short paragraph comparing the plum pudding model and Rutherford's nuclear model Do questions 3 and 4 in the worksheet SP 6a.4
	Extent : Research and produce a timeline of ideas about atoms and what is inside them
Resources	Edexcel GCSE (9-1) students book
	Interactive power point from Board works
	Worksheet SP6a.4
Specific Learning objectives And learning	Lesson 4 Electrons and orbits
outcomes	Specific Learning objectives
	Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus.
	Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation.
	Describe how and why the atomic model has changed over time including reference to the plum pudding model and Rutherford alpha particle scattering leading to the Bohr model.
	Specific Intended Learning Outcomes
	Realise that electron shell radii are fixed and electrons can only orbit at those distances from the nucleus.
	Understand the electrons need to gain or lose exactly the right amount of energy to move between shells.
	Explain the colour emitted from the electrons depends on the amount of energy that is lost as the electrons move shells.
	Describe how emission and absorption spectra leads to the discovery of Bohr's atom model
	Task
Task	Students watch a video tutorial
	1. Answer question 1-4 in the students book
	2. Discuss the difference between absorption spectra and emission
	spectra and describe how it leads to the discovery of Bohr's atom

	model.
	3. Answer the worksheet SP 6C.3 and 5
	4. Use the active teach ppt for assessing the students
Assessment Criteria/	Support: students should answer the questions 1 and 2 on the worksheet
Essential questions	SP 6c.3
	Stretch : Students to work in pairs to answer question E1 in the Student Book
	Extend : What evidence was Bohr trying to explain when he developed his model?
Resources	Edexcel GCSE (9-1) students book
	Interactive power point from Board works
	Worksheet SP 6C.3 and 5 (differentiated)
Task	Tasks
	1. Use a GM tube to measure background radiations
	 Identify the main sources of background radiations from a pie chart and classify them into natural and artificial sources and answer questions 2-4 in the students book
	3. Show ALDS video SP6d Background radiation and describe the two methods of detecting radiation
	4. Discuss why do we need to measure background radiations when we are investigating radioactivity and answer question 6 in the students book
Assessment Criteria/	Support: Worksheet 6d.3 question 1 -3
Essential questions	
	Stretch: E1 in students book
	Extend : Why do you think that radon gas in houses is more of a problem
	than it was 100 years ago?
	Edexcel GCSE (9-1) students book
Resources	Interactive power point from Board works
	Active learn ALDS video SP6d Background radiation

Lesson Plan

Subject	Physics
Class/ Section	Year 11- A - F
Week	Week 2- 5 th September to 9 th September,2021
Work send to students by	Google classroom
Total number of lessons per week	5
Unit/Topic	SP 7 – Astronomy SP 7a – The solar system SP 7 b – Gravity and orbits SP 7c – Life cycle of stars
Key Vocabulary	Solar system, geocentric model, heliocentric model, telescope, dwarf planet, asteroids, comets, elliptical, natural satellites, artificial satellites, weight, gravity, orbits, gravitational force, orbital speed, velocity, nebula, protostar, main sequence, red giant, white dwarf, supernova, massive stars, red super giants, black hole, neutron star.
	Lesson 1: SP7a The Solar System
	(Carried forward from the previous lesson)
	Specific Learning objectives
	7.2P - 7.3 P Recall that our Solar System consists of the Sun (our star),
Lessons 1,2,3,4 and 5 –	eight planets and their natural satellites (such as our Moon); dwarf planets;
Live Zoom lesson along	asteroids and comets. 7.4P Describe how ideas about the structure of the Solar System have
with face to face instruction for students	changed over time.
present on a particular	7.19P Describe how methods of observing the Universe have changed over time
day	including why some telescopes are located outside the Earth's atmosphere.
	Specific Intended Learning Outcomes
Work will be assigned	
in google classroom	• Describe the different bodies that make up the Solar System.
which will be matched	• Recall the names and order of the planets in the Solar System.
to the students' ability.	• Describe how ideas about the structure of the Solar System have changed over time.
	 Describe how methods of observing the Universe have changed over time.
	Tasks
	1. Recall about the solar system by making the concept map.
	2. Teacher explains the changing ideas about the Solar System
	and gives a brief description about the current model of the universe.
	3. Students will do research on

	Heliocentric model and its relevance
	• Geocentric model and its relevance in groups.
	4. They share the ideas with other groups.
	5. They compare and contrast the two models and write in their note book.
	6. Students will fill up the table and describe how methods of observing the
	Universe have changed over time.
	7. Provides a card-sort exercise looking at the advantages and disadvantages
	of ground and space-based telescopes. Students follow the instructions to sort
	the cards, and can then be asked to write a short paragraph summarising the
	advantages and disadvantages for each type of telescope.
	Assessment Criteria/Essential questions
	Support: Provide with a written passage about solar system in google
	classroom
	<i>Stretch</i> : Explain the retrograde motion
	Extend : Find out the typical size of the receiving part of a gamma ray or X-
	ray telescope and compare this to the size of a typical radio telescope, and
	suggest reasons for the difference.
	Edexcel GCSE 9-1 Physics Text book
Resources	
	Lesson 2: SP7b Gravity and orbits
	Specific Learning objectives
	7.1P Explain how and why both the weight of any body and the value of g
	differ between the surface of the Earth and the surface of other bodies in
	space, including the Moon.
	7.5P Describe the orbits of moons, planets, comets and artificial satellites.
	Specific Intended Learning Outcomes
	• Recall the factors that affect the strength of the gravitational field.
	• Explain why g has different values on different bodies in the Solar System.
	• Describe the orbits of moons, planets, comets and artificial satellites.
	Tasks
	1. Asks them to write some facts about gravity. Give them a few minutes to
	do this, and then compile.
	2. Recollect the knowledge about the relationship between weight and gravity
	that they have learned in SP2c.
	3. Displays the table given in the text book page and asks them to identify the
	factors affecting the gravitational field strength.
	4. Use the doodle interactive power point.
	5. Students will solve the exam style questions.
	Assessment Criteria/ Essential questions:
	Support : Check that students understand that the same ideas about orbits
	apply whether we are talking about a planet, comet or satellite in orbit around
	the Sun, or a moon or satellite orbiting a planet.
	<i>Stretch</i> : Asks the students to write about the different satellites and it's uses.
	Extend : Ask students to view the video and answer the questions.
	Edexcel GCSE 9-1 Physics Text book
Resources	
1/22/01/222	

	Lesson 3: SP7b Gravity and orbits
	Specific Learning objectives
	7.6P Explain for circular orbits how the force of gravity can lead to changing
	velocity of a planet but unchanged speed.
	7.7P Explain how, for a stable orbit, the radius must change if orbital speed changes (qualitative only).
	changes (quantative only).
	Specific Intended Learning Outcomes
	Recall the concept Circular motion.
	• Explain why the velocity of a planet changes even if orbiting at a
	steady speed.
	• Describe how changing the speed of an orbiting body affects the
	radius of its orbit.
	• Explain how the radius of a stable orbit is affected by the orbital speed.
	Tasks
	1. Review the concept circular by asking the questions.
	2. Displays the diagram from the student book page no.121.
	3. Asks the students to solve the given questions.
	4. Use the doodle interactive power point presentation.
	5. Discuss the text book question answers.
	Assessment Criteria/ Essential questions:
	Support : Help students to understand the idea that if a satellite speeds up it will move further from the Earth/adopt a less curved path by discussing
	driving/cycling around corners. A sharp corner can only be taken slowly – if a vehicle is moving too fast it cannot turn sharply enough and will leave the
	road on the outside of the bend. Elicit the idea that, for the vehicle, the amount of friction between the tyres and the road determines
	the maximum speed for a particular bend, whereas for a satellite the strength of gravity determines the speed
	needed for a particular orbit.
	<i>Stretch</i> : Ask students to think of the situation where two spacecraft are in the
	same orbit a few kilometres apart. Ask them to explain why, if one spacecraft
	needs to catch up with the other, it cannot do this simply by increasing its
	speed.
Resources	Edexcel GCSE 9-1 Physics Text book
	Lesson 4: SP7c Life cycles of stars
	Specific Learning objectives
	7.16P Describe the evolution of stars of similar mass to the Sun through the
	following stages: a nebula b star (main sequence).
	7.17P Explain how the balance between thermal expansion and gravity
	affects the life cycle of stars.
	Specific Intended Learning Outcomes
	• Describe the evolution of stars of similar mass to the Sun (including
	nebula, main sequence star).
	• Describe the forces acting on a star in terms of thermal expansion and
	gravity.
	• Explain how the balance of thermal expansion and gravity affects the
	life cycle of stars.

	Tasks.
	• A small animation video showing the stages of the life cycle of star.
	• Use doodle interactive power point.
	 Identify the stages of the star till it reaches the main sequence stage.
	• Discuss about the energy changes taking place in the nebulae,
	protostar and main sequence star.
	• Realise the role of gravity in the three stages and explain
	it using a diagram and write in the note book.
	Assessment Criteria/Essential questions
	Support: Give students the stages in order, and direct them to appropriate
	websites.
	<i>Stretch</i> : Ask students to find out approximately how long each stage lasts.
	Extend: Use the idea of balancing forces to explain what happens when you blow
	up a balloon.
Resources	Edexcel GCSE 9-1 Physics Text book
	Lesson 5: SP7c Life cycles of stars
	Specific Learning objectives
	7.16P Describe the evolution of stars of similar mass to the Sun through the
	following stages: red giant ,white dwarf.
	7.18P Describe the evolution of stars with a mass larger than the Sun
	Specific Intended Learning Outcomes
	• Describe why Stars will have shorter life spans with larger stars and
	longer life spans with smaller stars.
	• Describe the formation of red giant and explain why this stage is
	unstable.
	• Describe the final stages of a star similar to the Sun
	 Describe the final stages of a massive star – supernova, neutron star
	• Describe the final stages of a massive star – supernova, neuron star and black hole.
	• Compare and contrast the evolution of small as well as massive stars.
	Teska
	Tasks
	1. Asks the students to draw a diagram which shows the balance of forces in
	a star such as the Sun.
	2. Ask students to predict what happens to a star when nuclear reactions in
	the core stop.
	3. Use doodle interactive power point.
	4. Students will make a flowchart for the final stages of the star.
	5. Students will compare and contrast the life cycles of stars of different
	masses.
	Assessment Criteria/Essential questions
	Support: Point out that the differences in the life cycles of stars with
	different masses are mainly after the red
	giant/red supergiant phase.
	<i>Stretch</i> : Ask students to find out and explain why neutron stars have that
	name.
	Extend: A comparative study of the evolution of star like sun and massive
	star than sun. Present their findings in a concept map.
Resources	Edexcel GCSE 9-1 Physics Text book

Lesson Plan

Subject	Physics
Class/ Section	Yr 12 – Batch A/B
Week	Week 2 : 5 th September to 9 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	1.1 Units
Key Vocabulary	Base units, Derived units
Resources:	Edexcel AS/A level Physics 1 Textbook
	Interactive power point from Board works
Lessons 1,2,3 –Live Zoom lesson along with face to face instruction for students present on a particular day Work will be assigned in Google classroom which will be matched to the students ability.	 Lesson 1 Specific Learning objectives: Know and understand the principle of homogeneity of equations Identify the common prefixes for the powers of ten Specific Intended Learning Outcomes: To check whether the equation is correct using the principle of homogeneity Find the SI units of constants in an equation Tasks: I.Introduce the lesson objectives and success criteria Teacher explains the principle of homogeneity of equations Students identify that an equation will be homogeneous if all the terms in the given equation have the same base units Teacher introduces the different prefixes for powers of ten. Complete the given questions from the worksheet file. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning Complete the questions (pg 11) assigned from the Physics 1 text book in the notebook.

Assessment Criteria/Essential questions:
<i>Support :</i> Skim through some worked examples and complete the questions given
<i>Stretch:</i> check whether the given equation is valid principle of homogeneity Extend: explain how to find the SI units of unknown quantities in a given equation
<u>Resources:</u> Edexcel AS/A level Physics 1 Textbook Interactive power point from Board works
Lesson 2 & 3: Specific Learning objectives:
• Estimate values for physical quantities and use their estimate to solve problems.
 Specific Intended Learning Outcomes: Make estimates of physical quantities listed Express the estimates as powers of 10 Understand the power of tens of the estimate is the same as the true value Identify what is meant by Fermi questions? Tasks: Lesson 2
1. Open ended question to the students "how can you estimate the kinetic energy of a fast moving car?" and <i>Introduce the lesson objectives and success criteria</i>
 Teacher introduces estimations and provide the estimations of few quantities in powers of 10. Explain that the power of tens of the estimate is the same as the true value Lesson 3
 4. Complete the questions (pg 13) assigned from the Physics 1 text book in the notebook. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning. 5. Teacher introduce Fermi Questions and provide few examples 6. Students solve the given Fermi questions from the worksheet. <u>Assessment Criteria/ Essential questions:</u>
 Support : Arrange the given estimates in the order of magnitude Stretch: Estimate the mass of a given meter ruler Extend: Estimate the volume of the given container and also estimate the number of items that can be filled in it. <u>Resources:</u> Edexcel AS/A level Physics 1 Textbook Interactive power point from Board works

Lesson plan

Subject	Physics
Class/ Section	Yr 12 – Batch 1 and 2
Week	Week 2 - 5 th September to 9 th September , 2021
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	3.1 Electric quantities
Key Vocabulary	Charge, coulomb, current
	Lesson 1 and 2: Electric current
	Specific Learning objectives:
	• Describe electric current as the rate of flow of charged particles
	• make calculations of electric current.
	 Specific Intended Learning Outcomes: Understand that electric current is the rate of flow of charged particles. Explain that electric current in a metal is due to the movement of electrons, whereas in an electrolyte the current is due to the movement of ions. Explain what is meant by conventional current and electron flow Define the coulomb Solve problems using the equation Q = It and ΔQ = Iδt Describe how an ammeter may be used to measure the current in a circuit Recall and use the elementary charge (e = 1.6 × 10⁻¹⁹ C)
	Tasks 1:
	 Review simple electrostatic effects and electrostatic forces. Teacher would introduce law of conservation of charge and
	quantisation of charge $(Q = ne)$.
	Tasks 2: 1. Identify the coulomb in terms of electric current and introduce the equation $Q = It$ and $\Delta Q = I \Delta t$.
	 Students draw a simple circuit diagram to show how the ammeter is connected in a circuit
	3. Interpret the area under I-t graph as the total charge that passes

	4. Differentiate a.c and d.c
	5. Complete the questions assigned from the Physics 1 text book in the notebook.
	Support – Express Coulomb in terms of base units. Determine the number
	of electrons in one coulomb of charge.
Assessment	Stretch - Discuss and identify the charge carriers in different types of
Criteria/Essential	conductor such as metals, electrolytes, plasma, charged beams,
questions:	semiconductors.
	Extend – Investigate the shuttling ball experiment to observe current as the
	transport of charge.
Resources:	Edexcel AS/A level Physics 1 Textbook
	Interactive power point from Board works
	Lesson 3: Electrical energy transfer
	Specific Learning objectives:
	•define electromotive force and potential difference
	•make calculations of voltage and the energy transfer in
	components
	Specific Intended Learning Outcomes:
	• Define e.m.f. in terms of the energy transferred by a source in
	driving unit charge round a complete circuit
	• Use the expression $V = W/Q$ to solve a few numerical problems
	• Differentiate between emf and potential difference
	• State what is meant by the term mean drift velocity of charge
	carriers.
	Tasks:
	1. Demonstrate a very simple electrical circuit and ask students to identify the key energy transfers taking place.
	2. Teacher explains that there is a source of electrical energy and that the electrical energy is then transferred to other forms.
	3. Define 'emf' and 'potential difference' and introduce the equation $V = . W/Q.$
	4. Students work out numerical problems based on the equation
	Complete questions no:1 and 2 from textbook page no: 71
	5. Teacher introduce the term drift velocity of charge carriers
Assessment	Support – Discuss emf is caused by converting the other form of energy
Criteria/Essential	into electrical energy whereas in potential difference the electrical energy is
questions:	converted into other forms of energy.
	Stretch - Find out the energy stored in different types of cell, such as a car
	battery by using the capacity of the battery in Ah to calculate the total
	charge that flows through it and multiplying this by the terminal pd of the
	battery. Extend – Set students an experimental write-up and analysis to estimate
	the energy needed to raise 1 kg of water through 1 $^{\circ}$ C.
D	Edexcel AS/A level Physics 1 Textbook
Resources	Interactive power point from Board works

Lesson plan

Subject	
	Physics
Class/ Section	Yr 13 – Batch A/B
Week	Week 2 : 5 th September to 9 th September, 2021
Work send to	
students by	Google classroom
Total number of lessons per week	3
Unit/Topic	6.1 Further Momentum
Key Vocabulary	Impulse, Momentum conservation ,vector addition
Lesson 1,2,3 - 6	Lesson 1 and 2:
Live Zoom lesson	Specific Learning chiestings
along with face to face instruction for	Specific Learning objectives: Derive and use the expression $Ek = p^2/2m$ for the kinetic energy of a non-
students present on	relativistic particle. $p = p / 2 \ln 101$ the kinetic energy of a holi-
a particular day	Investigate and apply the principle of conservation of linear momentum to
a particular dag	problems in one dimension.
Work will be	Make calculations based on the conservation of linear momentum to
assigned in google	determine energy changes in collisions
classroom which	Explain the difference between elastic and inelastic collisions
will be matched to	
the students'	Specific Intended Learning Outcomes:
ability.	State that total linear momentum is always conserved in a collision.
	Apply the principle of conservation of momentum to solve problems when bodies interact in one dimension.
	Predict whether a collision is elastic or inelastic depending on whether KE is
	conserved or not.
	Explain that whilst the momentum of a system is always conserved in the
	interaction between bodies, some change in kinetic energy usually occurs.
	Realise that conservation of momentum is valid only if there is no external force.
	Apply the principle of conservation of momentum to explosions.
	Plan an experiment to verify the conservation of linear momentum. that
	momentum is 'lost' when something comes to rest
	Tasks:
	Lesson 1
	Introduction: Show on animation of Newton's and le and was it to recall concernation of
	Show an animation of Newton's cradle and use it to recall conservation of momentum.
	1.Recap conservation of momentum.
	2.Demonstrate a range of simple collisions, for example using a linear air

	track or marbles -This ensures that students can describe collisions and find the momentum of objects both before and after the collisions.
	3.Students: (group work):Discuss possible energy transfers that take place during collisions, demonstrating that impacts can cause heating and produce sounds.
	4. Use the concept of conservation of energy to discuss whether there would be any corresponding reduction in kinetic energy.
	5.Mathematically analyse an inelastic collision. Lesson 2
	1.Students investigate collisions between two trolleys using light gates or other data logging equipment.
	 2.W rite a plan of an experiment to verify the conservation of linear momentum. 2. Discussion and near sheets of the plan once turned in CC.
	3.Discussion and peer check of the plan once turned in GC
	.Students:(group work)
	Investigate the relationship between the force exerted on an object and its change of momentum.
<u>Assessment</u> <u>Criteria/ Essential</u> <u>questions:</u>	Formative assessment <u>Student book page 11</u> Support : Encourage students to start by adopting a sign convention, such
	as 'right is positive', and then to write out 'momentum before' and
	'momentum after'before equating these to solve a problem.
	Students who are visual learners will appreciate a treatment of conservation
	of linear momentum using vector arrows to represent the momentum of the system before and after a collision or explosion.
	Stretch : Question number 1,2,3
	Extended: worksheet file page Qn: number 6-8
Resources:	Edexcel A level Physics 2 Textbook
	Interactive power point from Board works
	Lesson 3:
	Specific Learning objectives:
	Analyse and interpret data to calculate the momentum of (non-relativistic) particles and apply the principle of conservation of linear momentum to problems in two dimensions
	Specific Intended Learning Outcomes: Resolve velocities into components and construct and solve equations for
	conservation of momentum in two dimensions Determine the final velocity and direction of one colliding object after a collision with another object at an angle. Tasks:
	Introduction:
	Illustrate change in momentum in two dimensions with a video.
	1. students to resolve some simple force vectors and velocity vectors into
	perpendicular components. For example, students can resolve a displacement of 40 m at an angle of 20 degrees north of east (into northward and eastward components).
	2. Recall resolution of vector components.

	3. Teacher Illustrates the problem solving techniques in conservation of
	momentum in two dimensions.
<u>Assessment</u>	Support: Start with some scale-drawing representations of forces to show
Criteria/Essential	how they can be combined to find a resultant as described earlier. For the
questions:	first example of a collision, use an impact that occurs at right angles to
	simplify the analysis.
	Stretch: Qn, worksheet file.
	Extended: Three-dimensional problem can be analysed in a similar way to
	the two-dimensional examples
	collisions between sub-atomic particles can be truly elastic.
	consions between sub-atomic particles can be truty clastic.
D	
Resources	Edexcel A level Physics 2 Textbook
	Interactive power point from Board works
	r r r r r r r r r r r r r r r r r r r

Lesson Plan 2021-22

Subject	Physics
Class/ Section	Yr 13 – Batch 1 and 2
Week	Week 2 : 5 th Sept – 9 th September, 2021
Work send to students by	Google classroom
Total number of lessons per week	3
Unit/Topic	7.1 Electric fields
Key Vocabulary	Electric field, Electric field lines, Electric field strength,
Lesson 1,2,3 - Live Zoom lesson	Lesson 1 - 2: Electric fields-Coulomb's law
along with face to face	Specific Learning objectives:
instruction for	• Define Coulomb's law in electrostatics.
students present on a particular day	• Make calculations of the electrostatic force between charged particles
Work will be	• Verify coulomb's law experimentally.
assigned in google classroom	Specific Intended Learning Outcomes:
which will be matched to the students' ability.	• State Coulomb's law to describe the size of the force between two point charges.

Γ	
	• Use the expression $F = k \frac{Q_1 Q_2}{r^2}$, where $k = 1/4\pi\varepsilon_0$
	• Discuss the fact that the force between two charges obeys inverse square law with distance and predict the graph.
	• Discuss an experiment using electronic balance to measure the force between two charges.
	Tasks:
	1. Review simple electrostatic effects and electrostatic forces.
	2. Discuss law of conservation of charge and quantisation of charge
	(Q = ne).
	3. Brainstorm with students what the force between two point charges depends upon and draw out the equation from the discussion.
	4. State Coulomb's law in the form: $F = k \frac{Q_1 Q_2}{r^2}$
	5. State and explain the inverse square law - F α 1/r ² .
	 Complete the questions 2-3 (pg 43) assigned from the Physics 2 text book in the notebook. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning.
<u>Assessment</u> <u>Criteria/ Essential</u>	Support – Find the units of constant k in Coulomb's law equation and derive its base units.
questions:	Stretch - Describe the force between two charges obeys inverse square law with distance and predict the graph.
	Extend – Investigate an experiment using electronic balance to measure the force between two charges.
	Edexcel A level Physics 2 Textbook
Resources:	Interactive power point from Board works, ppt – electric fields
	Lesson 3: Electric fields
	Specific Learning objectives:
	• Define electric field.
	• Use the equation for electric field strength E=F/Q.
	• Define radial electric fields.
	• Draw and interpret diagrams of electric fields.
	Specific Intended Learning Outcomes:
	• Define electric field as space where charges experience force.
	• Define electric field strength as force per unit positive charge $(E-E/Q)$
	(E=F/Q).State that electric field due to a point charge is radial.
	 Draw electric patterns of positive and negative charges, like charges and unlike charges.

	 Tasks: Describe the concept of field as a region in which a body experiences a force. Students should recognise that a field can be represented as a vector, the direction of the force on a positive charge. Show students the shape of a field surrounding a point charge, highlighting the field lines. Discuss the direction of the field and what the spreading of the field lines indicates. Include the idea of what would happen to a small positive charge placed in the field to explain the direction of the lines. Derive and use the expression E = k Q/r^2 for the electric field due to a point charge.
<u>Assessment</u> Criteria/Essential	Support – Derive the expression $E = kq/r^2$ for the electric field due to a point charge.
questions:	Stretch – Draw the field line pattern between a plate and a point charge.
	Extend – Discuss the idea of an inverse square relationship where the field strength decreases with the square of the distance. Investigate experiments to verify the inverse square relationship between field strength and distance
Resources:	Edexcel A level Physics 2 Textbook Interactive power point from Board works, ppt – electric field