<u>MATHEMATICS FIRST TERM EXAMINATION PORTION- JAN 2022</u> <u>YEAR 11</u>

PAPER 1 - 1MA1/1H - NON CALCULATOR - 80 MARKS - 1 ½ HOURS

PAPER 2 - 1MA1/2H - CALCULATOR - 80 MARKS - 1 ½ HOURS

PAPER 3 - 1MA1/3H - CALCULATOR - 80 MARKS - 1 ½ HOUR S

- UNIT 13 More Trigonometry
- UNIT 19 Proportion and Graphs
- UNIT 17 More Algebra
- UNIT 14 Further Statistics

REVISION UNITS

- UNIT 1 Number (Excluding 1.1)
- UNIT 2 Algebra
- UNIT 3 Interpreting and Representing Data
- UNIT 4 Fractions and Percentages
- UNIT 5 Angles and Trigonometry
- UNIT 6 Graphs
- UNIT 8 Transformations and Constructions
- UNIT 9 Equations and Inequalities
- UNIT 11 Multiplicative Reasoning
- UNIT 12 Similarity and Congruence
- UNIT 15 Equations and Graphs

A formula sheet will be given for the Examination

Perimeter, area and volume	Quadratic formula
Where <i>a</i> and <i>b</i> are the lengths of the parallel sides and <i>h</i> is their perpendicular separation: Area of a trapezium = $\frac{1}{2} (a + b) h$ Volume of a prism = area of cross section × length Where <i>r</i> is the radius and <i>d</i> is the diameter: Circumference of a circle = $2\pi r = \pi d$	The solution of $ax^2 + bx + c = 0$ where $a \neq 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Area of a circle = πr^2	
Pythagoras' Theorem and Trigonometry a c c d	In any right-angled triangle where <i>a</i> , <i>b</i> and <i>c</i> are the length of the sides and <i>c</i> is the hypotenuse: $a^2 + b^2 = c^2$ In any right-angled triangle <i>ABC</i> where <i>a</i> , <i>b</i> and <i>c</i> are the length of the sides and <i>c</i> is the hypotenuse: $\sin A = \frac{a}{c} \cos A = \frac{b}{c} \tan A = \frac{a}{b}$ In any triangle <i>ABC</i> where <i>a</i> , <i>b</i> and <i>c</i> are the length of the sides: sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2} a b \sin C$
Compound Interest Where <i>P</i> is the principal amount, <i>r</i> is the interest rate over a given period and <i>n</i> is number of times that the interest is compounded: Total accrued = $P\left(1+\frac{r}{100}\right)^n$	ProbabilityWhere P (A) is the probability of outcome Aand P (B) is the probability of outcome B:P (A or B) = P (A) + P (B) - P (A and B)P (A and B) = P (A given B) P(B)