YEAR 12 A/ B -PHYSICS

WEEK 5 (27th Sept to 1st October) - 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic:_Solid Materials

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date	Class	Lesson	Lesson objectives & Learning	Mode of	
			outcomes	teaching	
			Learning objectives:		
27 th Sept Sunday	12 A	8	Use the given worksheet to solve numerical problems.	GC	Teacher uses Google classroom to
29 th Sept			Learning Outcomes :		share the ppt and worksheet.
Tuesday	12 B	6	Identify the gradient of		
			F-e graph as force constant <i>RECAP</i>		
			Estimate as well as Calculate the		
			elastic strain energy stored from a force–extension graph for a sample.		
			Learning objectives:		
28 th Sept	12 A	1	Develop ideas about springs in		Teacher uses
Monday			series and parallel		interactive power point presentation and breakout sessions for students to collaborate and
			Lead students toward the idea of dependence of force and extension on material dimensions.	Zoom	
			Differentiate between tensile/compressive stress and		

			strain		attain the
1 st Oct	12 B	3	Learning Outcomes :		objectives.
Thursday			Calculate the resultant Force constant for springs in series and springs in parallel and thus calculate the total extension Define and use the terms stress, strain, and ultimate tensile strength (breaking stress)		HW
			Be able to calculate stress and strain from given data		
			State the S.I units of stress		
21st Sept Monday	12 A	2	Learning objectives: Recognize that Young modulus is a property of a material's stiffness and is independent of its dimensions. Realise that a gradient of stress-	Zoom	Teacher uses interactive power point presentation and breakout sessions for students to
			strain graph gives the value of Young's Modulus.	20011	collaborate and
24 th Sept			Learning Outcomes :		objectives.
Thursday	12 B	4	Define and use the terms Young modulus State and use the S.I units of Y.M Use a stress-strain graph to calculate young's modulus		

YEAR 12 A/ B – PHYSICS

WEEK 5 (27th Sept to 1st Oct) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: 2.12 Motion graphs 2.16 Kinematic equations

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date	Class	Lesson	Lesson objectives & Learning	Mode of	
			outcomes	teaching	
27th Sept Sunday	12 B	6	L.O – Draw and interpret displacement/time, velocity/time and acceleration/time graphs for a bouncing ball.	Zoom	Teacher uses power point presentation to
29th Sept Tuesday	12 A	4	 Learning outcomes- Analyse the motion of a bouncing ball in terms of s-t, v-t and a-t graphs. Plan an experiment to investigate the motion of a bouncing ball using motion sensor. 		explain the motion of a bouncing ball and provide a good example of how motion is represented graphically.
27th Sept Sunday	12 B	7	L.O – Derive, from the definitions of velocity and acceleration, equations that represent uniformly accelerated motion in a straight		AFL on motion graphs – 10 marks
1 st Oct Thursday	12 A	1	 line Learning outcomes- Use the equations for uniformly accelerated motion in one dimension: v = u + at s = ut + ½ at² v² = u² + 2as Identify negative displacement, velocity and acceleration in different situations. 	Zoom	Teacher uses interactive power point presentation to explain the concepts. Recall the eqns of uniform acceleration and can apply them in calculations involving motion in straight lines.
			L.O : Solve problems using		Worksheet prepared in two

30 th Sept	12 B	3	equations that represent uniformly		levels to practise
Wednesday			accelerated motion in a straight	_	using the equations
			line, including the motion	Zoom	for uniform
			of bodies falling in a uniform		acceleration. Teacher will post the worksheet in
1 st Oct	12 A	2	resistance.		the GC.
Thursday			 Learning outcomes- Recall the kinematic equations for uniformly accelerated motion. Calculate unknown variables using the kinematics equations. 		HW