YEAR 13 A/B -PHYSICS

WEEK 5 (27th Sept to 1st October) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: Circular Motion

Date	Class	Lesson	Lesson objectives & Learning outcome	Mode of teaching		
28 th Sept Monday 29 th Sept Tuesday	13 B	6	Learning objectives: Apply the principles of circular motion to Banked roads and amusement park rides such as a chair plane ride. Learning Outcomes: Draw the FBD of the car on a banked road and identify how a component of weight /normal reaction force provides for CF Deduce the expression for optimum angle	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives.	
			Use the given worksheet to solve numerical problems. Use the equations for centripetal force.			
28 th Sept Monday	13 B	7	Learning objectives: Differentiate between vertical and horizontal motion	Zoom	Teacher uses power point presentation and breakout	

1 st October Thursday	13 A	1	Learning Outcomes: Explain the variation in contact forces on a roller coaster car during a vertical looping. Draw the free body force diagrams on the car at the positions indicated. Identify the force /(s)that provides the centripetal force Formulate an expression for the centripetal force at these positions.		sessions for students to collaborate and attain the objectives.	
30 th Sept Wednesday	13 B	3	Learning objectives: Considering the path of the roller-coaster to be a segment of a circle so that it can be related to the centripetal acceleration, Identify the condition for weightlessness	Zoom	Teacher uses Google Classroom and breakout sessions in Zoom for	
1 st October Thursday	13 A	2	Realise how fast would you need to be traveling to experience apparent "weightlessness" while passing over the top of a vertical circle Deduce the expression for critical speed		students to collaborate and attain the objectives.	

YEAR 13 A/B -PHYSICS

WEEK 5 (27th Sept to 1st Oct) - 3 lessons for both batches

Work sent to the students through: What sapp group / Google classroom / Zoom Learning Platform

Topic: - 7.1 - Electric fields. 7.2 - Capacitors

Resources: Student text book, interactive power point, Board works, worksheet file and online videos/animations

Date	Lesson	Lesson objectives & Learning outcome	Mode of teaching		
28 th Sept Monday - 13 A 29 th Sept Tuesday - 13 B	6	 L.O – Demonstrates how Millikan's oil drop experiment is used to determine the charge of an electron. Learning outcomes- Describe the experimental setup which Robert Millikan used to determine the charge on an electron. Explain how different areas of Physics can be brought together in one experiment to solve a problem. 	Zoom	Teacher uses power point presentation to explain the exptal setup and concepts and guide students through the process. AFL on electric fields – 10 mks	
28 th Sept Monday - 13 A	2	L.O – Define capacitance and the farad as applied to parallel plate capacitors. Investigate the relationship between <i>Q</i> and <i>V</i> for a capacitor in order to define capacitance and the farad.	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and guide students to solve problems.	
1 st Oct Thursday - 13 B	3	 Learning outcomes- Describe how capacitors can be used in a circuit to store charge. Use the equation for capacitance C= Q/V Plot a graph of charge against p.d. and evaluate the gradient to define it as capacitance. 			
29 th Sept Tuesday - 13 A	5	L.O – Use the expression W = ½ QV for the energy stored by a capacitor, derive the expression from the area under a graph of charge against p.d stored, and derive and use related expressions,	Zoom	Teacher uses boardworks &	
Thursday - 13 B	4	 W = ½ CV² and W = ½Q²/C Learning outcomes- Use the expression W = ½ QV and W = ½ CV² for the energy stored by a capacitor Predict the graph of charge against p.d and hence determine the area under a graph as equal to energy stored by a capacitor Use the equations for energy stored on a capacitor. 		power point presentation to explain the concepts and guide students to solve problems from worksheet file.	