YEAR 13 A/ B -PHYSICS

WEEK 3 (13th Sept to 17th Sept) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: - Linear Momentum in 2 D

Learning objectives: Apply the principle of conservation of linear momentum to problems in two dimensions.

Date	Class	Lesson	Lesson objectives &	Mode of	
			Learning outcome	teaching	
			Learning objectives:		Teacher uses
14 th Sept	13 B	6	- Apply the principle of	Zoom	power point
Monday			conservation of linear		presentation and
			momentum to problems in		breakout
			two dimensions.		sessions for
15 th Sept	13 A	4	Learning outcomes-		students to
Tuesday			Make calculations based on		collaborate and
			the conservation of linear		attain the
			momentum to determine		objectives.
			energy changes in collisions		
			Solve numerical questions		
			from worksheet file.		
			Learning objectives:		
14 th Sept	13 B	7	Identify the use of		Teacher uses
Monday			Pythagoras theorem and	zoom	power point
			trigonometry in vector		presentation and
			diagrams; to solve		breakout
			numerical problems.		sessions for
17 th Sept	13 A	1	Learning Outcomes :		students to
Thursday			Use the given worksheet to		collaborate and
			solve numerical problems.		attain the
			procession procession		objectives.
			Substitute numerical values		
			into algebraic equations		
			using appropriate units for		
			physical quantities		
16 th Sept			L.O : Test conducted to	zoom	Teacher uses
Wednesday	13 B	3	assess their knowledge on		Google forms to
					conduct test
			Appling the principle of		
17 th Sept	13 A	2	conservation OF momentum		
Thursday			to problems in 1 & 2 D		

YEAR 13 A/ B -PHYSICS

WEEK 3 (13th Sept to 17th Sept) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - Electric fields.

Resources: Student text book, interactive power point, Board works and online

Date	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
14 th Sept Monday - 13 A 15 th Sept Tuesday - 13 B	1	 L.O – Understand the concept of an electric field as an example of a field of force and define electric field strength. Use the expression electric field strength <i>E</i> = <i>F/Q</i> Learning outcomes- State that electric fields are created by electric charges. Define electric field strength as force per unit positive charge (<i>E</i>=<i>F/q</i>). Give the unit of E as N/C and express N/C in terms of base units 	Zoom	Carried forward from last week as test was given on Diffraction of light. Teacher uses power point presentation to explain the concepts and guide students through the process.
14 th Sept Monday - 13 A 17 th Sept Thursday - 13 B	2 3	 L.O – Understand uniform and radial elctric fields. Derive the expression E = kq/r² for the electric field due to a point charge. Learning outcomes- Define uniform fields and radial fields. Use the expression E = V/d to calculate the field strength of the uniform field between charged parallel plates and E = kq/r² for the electric field strength due to a point charge in free space. Discuss the fact that the field strength obeys inverse square law with distance and predict the graph. 	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and guide students to solve problems.
15 th Sept Tuesday	5	L.O – Draw and interpret diagrams of electric fields.	Zoom	Teacher uses boardworks &

- 13 A 17 th Sept 4 Thursday - 13 B	 Onderstand the need for an arrow on the field line to show the direction of the force on a positive charge. Learning outcomes- Know that electric field are represented by means of field lines Predict and draw the shape of the electric field around a point charge and between two parallel plates. Draw field lines for attracting and repelling charges, a point charge and a flat plate. 	power point presentation to explain the concepts. Students draw the field line pattern betwee a point charge and a parallel plate. Ask ther to suggest the field line patte for a slightly curved plate.
- 13 A	Understand the need for an arrow on the field line to show the direction of the force on a positive charge.	power point presentation explain the
Thursday - 13 B	 Know that electric field are represented by means of field lines Predict and draw the shape of the electric field around a point charge and between two parallel plates. Draw field lines for attracting and repelling charges, a point charge and a flat plate. 	Students draw the field line pattern betwee a point charge and a parallel plate. Ask ther to suggest the field line patter for a slightly curved plate.