YEAR 12 G /D – CHEMISTRY

WEEK 4 (20th Sept to 24th Sept)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic:– Atomic orbitals and electronic configurations

Resources: Text book, Worksheet file, video, power point presentations.

Date	Торіс	
22.09.2020	Lesson Objective:	Teacher uses
Tuesday	Know the number of electrons that can fill the first four quantum	PowerPoint
1 12G	shells.	presentation that
	Know that an orbital is a region within an atom that can hold up to	contains interactive
21.09.2020	two electrons with opposite spins.	questions to
Monday	onday Know the shape of an <i>s</i> -orbital and a <i>p</i> -orbital	
3 12D	Know the number of electrons that occupy <i>s</i> , <i>p</i> and <i>d</i> -subshells	different atomic
	Learning Outcome:	orbitals, their
Mode of	Predict the maximum number of electrons in each quantum shell.	shapes and the
Teaching:	Define an orbital.	maximum number
Zoom	Distinguish the shapes of electron density plots (or maps) for s	of electrons the
	and p orbital.	subshells can
	Predict the maximum number of electrons occupied in the	occupy.
	different subshells.	1.0
22.09.2020	Lesson Objective:	Teacher uses
Tuesday	Know that electrons fill subshells singly, before pairing up, and	PowerPoint
2 12G	that two electrons in the same orbital must have different spins	presentation that
	Be able to predict the electronic configurations, using 1s notation	contains interactive
7 12D	and electrons in-boxes notation, of	questions to
	i) atoms, given the atomic number, Z, up to $Z = 36$	explain the
Mode of	ii) ions, given the atomic number, Z, and the ionic charge, for s	different atomic
Teaching:	and p block ions only, up to $Z = 36$.	orbitals.
Zoom	Learning Outcome:	
	Deduce electronic configurations of atoms and ions using spdf	
	configuration.	
	Compare the exceptions of Cu and Cr due to added stability of	
	half-filled or filled 3d sub shell.	
23.09.2020	Lesson Objective:	Teacher uses
Wednesday	Know that elements can be classified as s , p and d -block elements	PowerPoint
2 12G	Understand that electronic configuration determines the chemical	presentation that
	properties of an element	contains interactive
24.09.2020	Learning outcome:	questions to
Thursday	Use the diagram of periodic table split into s, p, d and f – idea that	explain s,p,d and f
7 12D	all elements belong to one of these blocks and block gives sub-	block elements in
Mode of	Mode of shell in which outer electrons are found.	
Teaching:	Writes the subshell electronic configuration to identify the	
Zoom	differences in different group elements.	

HOMEWORK: Complete the textbook questions page 19

YEAR 12 G/D – CHEMISTRY

WEEK 4 (20th Sept to 24th Sept)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic 2 – shapes of molecules and ions .

Resources: Text book, Worksheet, Video, Boardworks, powerpoint

Date	Торіс	
22.09.20	Learning Objective:	Teacher uses powerpoint and
Tuesday	- To be able to explain the VSEPR theory	interactive animation for
8 12D	- To understand how the VSEPR theory can be	shapes.
	used to predict molecular geometry	
21.09.20	- To visualize the shapes of molecular orbitals	
Monday	using balloons	
6 12G	Learning Outcome:	
	1) Recalls:VSEPR - stands for Valence Shell	
Mode of	Electron Pair Repulsion - describes the	molecule-shapes_en.html
Teaching –	shape that molecules form in compounds	
Zoom	- based on idea that electron pairs in the	Instructions will be given to
	valence shell with repel and try to be as far	complete chapter questions.
	from each other as possible	
	Explain molecular geometry two bond	
	pairs and three bond pairs.	
21.09.20	Learning Objective:	Teacher uses powerpoint
Monday	- To understand how the VSEPR theory can be	presentation and animations to
7- 12G	used to predict molecular geometry on the bases of	explain shapes.
	bond pairs and lone pairs	
	- To visualize the shapes of molecular orbital on	Teacher uses worksheet that
	the basis of repulsion between lone pairs is much	contains interactive questions,
23.09.20	more than repulsion between lone pair and a bond	to explain the shapes.
Wednesday	nair as well as repulsion between hond pairs	r r r r r r
7- 12D	puil, us went us repuision between bond puils	
	Learning Outcome.	
Mode of		
Teaching –	- describes shape that molecules form	
ZOOM	various numbers of bond pairs and lone and	
	lone pairs	
	Predict the bond angles, shapes of simple	
	molecules and ions using electron pair repulsion	
	theory. Predict the nature of intermolecular forces	
	resulting from London forces, permanent dipoles	
	and hydrogen bonds. Assessment 2	

22.00.20	• Solve the given worksheet.	Teacher uses past paper
25.09.20		questions based on bonding.
Wednesday		
8- 12D		
1-12G		
Mode of		
Teaching –		
GC		

HOMEWORK: Solve textbook questions page 52