YEAR 13 A/ B – PHYSICS

WEEK 4 (20th Sept to 24th Sept) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: Circular Motion

Date	Class	Lesson	Lesson objectives & Learning	Mode of teaching	
21 st Sept Monday	13 B	6	Learning objectives: Introduce the radian, Describe Angular displacement, angular velocity and instantaneous velocity Demonstrate & Discuss what is	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives.
22 nd Sept Tuesday	13 A	4	meant by circular motion Learning outcomes- Express angular displacement in radians and in degrees. Explain the concept of angular velocity	Zoom	
			Recognise and use the relationships $v = \omega r$ and $T = 2\pi/\omega$		
			Realise that a force perpendicular to the velocity of an object will make the object describe a circular path		
21 st Sept Monday	13 B	7	Learning objectives : Explain what is meant by centripetal acceleration and centripetal force	Zoom	Teacher uses power point presentation and breakout
24 th Sept Thursday	13 A	1	Learning Outcomes :		sessions for students to
			Define centripetal acceleration		attain the
			Explain that a centripetal force is required to produce and maintain circular motion		objectives.
			Derive the equation for centripetal acceleration $a = v^2 / r$ $= r\omega^2$		
			Select and apply the equations for speed		

			$v = 2 \pi r/T$ and centripetal acceleration $a = v^2/r = r\omega^2$		
23 rd Sept Wednes day	13 B	3	Learning objectives: Select and apply the equation for centripetal force $F = ma = mv^2/r = mr\omega^2$	Zoom	Teacher uses Google Classroom and breakout sessions in
24 th Sept Thursday	13 A	2	Apply the principles of circular motion to orbital motion of electrons, planets, amusement park rides etc. Use the given worksheet to solve numerical problems. use the equations for centripetal force.		Zoom for students to collaborate and attain the objectives.

YEAR 13 A/ B -PHYSICS

WEEK 4 (20th Sept to 24th Sept) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - Electric fields.

Resources: Student text book, interactive power point, Board works and online

Date	Lesson	Lesson objectives & Learning outcome	Mode of	
			teaching	
21 st Sept		L.O – Describes acceleration of electron		
Monday	1	beams by electric fields and discuss the	Zoom	Teacher uses
- 13 A		energy transfers.		power point
		Learning outcomes-		presentation to
22 nd Sept		• Explain how charged particles can be		explain the
Tuesday	6	accelerated by electric fields.		concepts and
- 13 B		 Realise that the path of a charged particle in uniform electric field is parabolic. Derive expressions for the speed of the particle, deflection and the time spent in the electric field. 		guide students through the process.
21 st Sept	2	L.O – Understand the relation between electric field and electric potential		

Monday - 13 A 24 th Sept Thursday - 13 B	3	 Use V = Q/(4πε₀r) for a radial field Learning outcomes- Define potential at a point as the work done per unit positive charge in bringing a small test charge from infinity to the point. State that the field strength of the field at a point is equal to the negative of potential gradient at that point. Use the equation V = Q/(4πε₀r) for the potential in the field of a point charge. 	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and students to solve problems involving electric potential in a radial field.
22 nd Sept Tuesday - 13 A	5	L.O – Draw and interpret diagrams using field lines and equipotentials to describe radial and uniform electric fields.	Zoom	AFL – 10 marks MCQ in google forms
24 th Sept Thursday - 13 B	4	 Learning outcomes- Define equipotentials and describe an experiment to investigate equipotentials. Sketch the equipotentials between two parallel plates and radial field. 		Students draw and interpret the equipotentials for radial and uniform electric fields.

Homework : Solve worksheet file questions – Electric Fields