YEAR 13A/ B -PHYSICS

WEEK 2 (6th Sept to 10th Sept) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: - Linear Momentum in 1 D and 2 D

Date	Class	Lesson	Lesson objectives & Learning outcome	Mode of	
			0	teaching	Teacher uses
7 th Sept	13 B	6	L.O- Investigate and apply the principle of concernation	Zoom	
	13 D	0	the principle of conservation of linear momentum to	Zoom	power point
Monday					presentation and breakout
			problems in one dimension.		
otho	12.4	4	T		sessions to
8 th Sept	13 A	4	Learning outcomes-		guide students
Tuesday			Make calculations based on		through the
			the conservation of linear		process.
			momentum to determine		
			energy changes in collisions		
			Explain the difference		
			between elastic and inelastic		
			collisions		
			Calculate impulses and		
			changes in momentum.		
			Derive and use the		
			expression $Ek = p^2/2m$ for		
			the kinetic energy of a non-		
			relativistic particle.		
			L.O : Analyse and interpret		
7 th Sept	13 B	7	data to calculate the		Teacher uses
Monday			momentum of (non-	zoom	power point
-			relativistic) particles and		presentation and
			apply the principle of		breakout
			conservation of linear		sessions to
10 th Sept	13 A	1	momentum to problems in		guide students
Thursday			one and two dimensions		through the
-					process.
			Learning outcomes-		-
			Resolve velocities into		
			components and construct		
			and solve equations for		
			conservation of momentum		
			in two dimensions		
			Determine the final velocity		
			and direction of one		

			colliding object after a collision with another object at an angle.		
9th Sept Wednesday	13 B	3	L.O – Analyse and interpret data to calculate the momentum of (non- relativistic) particles and apply the principle of conservation of linear	200M	Teacher uses power point presentation and breakout sessions to guide students
10 th Sept Thursday	13 A	2	momentum to problems in one and two dimensions (contd)		through the process.
			Learning outcomes- Identify the use of Pythagoras theorem and trigonometry in vector diagrams; to solve numerical problems.		

YEAR 13 A/ B -PHYSICS

WEEK 2 (6th Sept to 10th Sept) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - Electric fields.

Resources: Student text book, interactive power point, Board works and online

Date	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
7 th Sept Monday - 13 A 8 th Sept Tuesday - 13 B	1 6	L.O – Explain what is meant by an electric field and recognise and use the expression electric field strength $E = F/Q$ Learning outcomes- State that electric fields are created by electric charges. Define electric field strength as force per unit positive charge $(E=F/q)$. Give the unit of E as N/C and express N/C in terms of base units	Zoom	Teacher uses power point presentation to explain the concepts and guide students through the process.
7 th Sept Monday - 13 A 10 th Sept Thursday - 13 B	2 3	L.O – Use Coulomb's law in the form $F = kQ_1Q_2/r^2$ for the force between two point charges in free space or air. Learning outcomes- State Coulomb's law to describe the size of the force between two point charges. Discuss the fact that the field strength obeys inverse square law with distance and predict the graph. Make calculations of the electrostatic force between charged particles.	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and guide students to solve problems.
8 th Sept Tuesday	5	L.O – Verify Coulomb's law experimentally	Zoom	Students plan an expt to show

- 13 A	4		that Coulomb's
10 th Sept Thursday - 13 B		Learning outcomes- Discuss an experiment using electronic balance to measure the force between two charges.	law follows an inverse square relationship.