YEAR 13 A /B -CHEMISTRY

WEEK 7 (11th Oct to 15th Oct)

Topic: Acid and Base equilibrium.

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point pr	presentations.
---	----------------

Date	Topic	
11.10.20 Sunday 1-13A	Lesson Objective: - draw and interpret titration curves using any combination of strong and weak monobasic acids and monoacid bases	Teacher uses power point presentation that contains interactive questions.
4-13B	- select a suitable indicator, using a titration curve and suitable data.	
Mode of Teaching – Zoom	Success Criteria: - draw and interpret titration curves using any combination of strong and weak monobasic acids and monoacidic bases from the given experimental data.	Students solve the worksheet file questions.
	Explain Indicators change colour at a pH of around +/-1 their pKIn value.Students will be able to consolidate their understanding of indicators by answering different types of past paper questions from the Edexcel website.	
	Lesson Objective: - draw and interpret titration curves using any combination of strong monobasic acids and a strong	
Sunday 11.10.20 2-13 A	 monoacidic bases select a suitable indicator, using a titration curve and suitable data. Success Criteria: draw and interpret titration curves using any combination of strong and strong monobasic acids and monoacidic bases from the given experimental data. 	Teacher uses power point presentation that contains interactive questions.
	Explain Indicators change colour at a pH of around $+/-1$ their p <i>K</i> In value.	Students solve the

13.10.20 Tuesday 2-13B Mode of Teaching – Zoom	Students will be able to consolidate their understanding of indicators by answering different types of past paper questions from the Edexcel website.	worksheet file questions.
Wednesday 14.10.20 4-13A 2-13B Mode of Teaching – Zoom	Lesson Objective: - Understand what is meant by the term 'buffer solution' - understand the action of a buffer solution - calculate the pH of a buffer solution given appropriate data - calculate the concentrations of solutions required to prepare a buffer solution of a given pH - understand the roles of carbonic acid molecules and hydrogen carbonate ions in controlling the pH of blood. Success Criteria: -define buffer solution	Teacher uses power point presentation that contains interactive questions.
	 explain buffer action calculate the pH of buffer given appropriate data calculate the concentrations of solutions required to prepare a buffer solution of a given pH understand the roles of carbonic acid molecules and hydrogen carbonate ions in controlling the pH of blood. 	Students solve the worksheet file questions .

	 Will be able to write the equations to show buffer action for an acidic buffer CH₃COOH/CH₃COO⁻ Na⁺ system and the alkaline buffer NH₃/NH₄⁺ system.
Homework :	Solve worksheet file questions and text book questions page 38.

YEAR 13 A/B- CHEMISTRY

WEEK 7 (11th Oct to 15th Oct)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic:- Standard Electrode potential

Resources: Text book, Worksheet, Video, Board works, power point

Date	Торіс	

11.10.20	Learning Objective:	Teacher uses textbook
Sunday 4 13A	Reinforce what is meant by the term 'standard electrode potential', E^{θ} .	questions and power point to introduce the concept of electrode
5 13B Mode of Teaching – Zoom	 Recall that the standard electrode potential, E^θ, refers to conditions of: 298 K temperature 100 kPa pressure of gases 100 mol dm⁻³ concentration of ions. Learning Outcome: Explain oxidation as increase in oxidation number and reduction as decrease in oxidation number. Define standard electrode potential for an electrode. Explain the conditions maintained for the standard electrode potentials in terms of temperature, pressure and concentrations. 	potential.
11 .10.20 Sunday 8 13B 14.10.20 Wednesday 5 13A Mode of Teaching –	 Learning Objective: Understand the features of the standard hydrogen electrode and understand why a reference electrode is necessary. Explain the different methods are used to measure standard electrode potentials of: metals or non-metals in contact with their ions in aqueous solution ions of the same element in different oxidation states. Learning Outcome: Discuss the setup of the standard electrode potential and its use as the reference. Predict how to measure, using a hydrogen electrode, standard electrode potentials of: (i) metals or non-metals in contact with their ions in 	Teacher uses PowerPoint presentation and video to demonstrate the different half cells. Teacher uses worksheet that contains interactive questions, to explain the cell notation and half equations.
Zoom	(i) metals or non-metals in contact with their ions in aqueous solution.(ii) ions of the same element in different oxidation states.	
13.10.20 Tuesday 1 13B	 Learning Objective: Predict feasibility of a reaction using standard electrode potential. Understand how disproportionation reactions relate 	Instructions will be given to complete chapter questions.

 Wednesday Understand the limitations of predictions made using standard electrode potentials. Understand the importance of conditions when 	Teacher uses past paper questions to assess the concept of whether a reaction is possible.
--	--

HOMEWORK: Solve textbook question page 95