YEAR 13A/ B – PHYSICS

WEEK 7 (11th Oct to 15st October) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: Circular Motion & Thermodynamics

Date	Class	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
11 th Oct Monday 12 th Oct Tuesday	13 B 13 A	6	Learning objectives : Investigate, recognise and use the expression $\Delta E = mc\delta\theta$ Learning Outcomes : Describe an electrical experiment to determine the specific heat capacity of a solid or a liquid. Measure specific heat capacity of a solid and a liquid using, for example, temperature sensor and data logger. Infer how to determine shc graphically from the variables collected	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives.
11 th Oct Monday 15 th Oct Thursda y	13 B 13 A	7	Learning objectives:Reinforce how conservation of energy is used in calorimetry to identify the specific heat capacity of materials.Learning Outcomes :Plan and apply the experimental methods of calorimetry in the determination of the specific heat of COPPER.	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives.
			Use the experimental data to find the specific heat of an unknown metal and research to identify the		

			metal.		
14th Oct Wednesd ay	13 B	3	Learning objectives : Explain the change of state and the energy changes associated with it using specific latent heat of vapourisation.	Zoom	Teacher uses Google Classroom and breakout sessions in Zoom for
15th Oct Thursda y	13 A	2	Learning Outcomes : Describe what happens to the energy supplied during a change of state. Use E = mL to calculate the energy needed to change state. Investigating specific latent heat		students to collaborate and attain the objectives.

YEAR 13 A/ B -PHYSICS

WEEK 7 (11th Oct to 15th Oct) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - 7.2 - Capacitors

Resources: Student text book, interactive power point, Board works, worksheet file and online videos/animations

Date	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
12 th Oct Monday - 13 A	1	L.O – <u>CORE PRACTICAL 11:</u> Use an oscilloscope or data logger to display and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor.	Zoom	Teacher uses power point presentation to guide the students to
Tuesday		Learning outcomes-		plan and carry

- 13 B	6	 Plan expt to measure pd across the discharging capacitor Sketch graphs that show the variation with time of potential difference for a capacitor discharging through a resistor. Define the time constant of a circuit. Use time constant = CR from graph to determine the value of unknown capacitor. 		out the virtual expt and analyse the pd across capacitor as it charges and discharges through a resistor.
12 th Oct Monday - 13 A 15 th Oct Thursday - 13 B	2 3	L.O – Use related expressions, for exponential discharge in RC circuits, $I = Io e^{-t/RC}$ and $V = V_0 e^{-t/RC}$ and the corresponding log equations $ln Q = ln Q_0 - \frac{t}{RC}$ $ln I = ln I_0 - \frac{t}{RC}$ and $ln V = ln V_0 - \frac{t}{RC}$ Learning outcomes- • Derive a straight line graph from the decay equation and hence plot graph of lnQ or lnI against time to find the time constant.	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and guide students to understand the use of ln graphs to determine time constant
13 th Oct Tuesday - 13 A 15 th Oct Thursday - 13 B	5	 L.O - Show an understanding of the functions of capacitors in simple circuits Learning outcomes- Understand that capacitors are helpful in various practical uses for certain functions. These functions can include: blocking of direct currents smoothing of rectified alternating currents time delays in electronic circuits defibrillators 	Zoom	Students research on the uses of capacitors to find out some common situations where capacitors are put in use in circuits