YEAR 13 A /B -CHEMISTRY

WEEK 8 (18th Oct to 22nd October)

Topic: Acid and Base equilibrium.

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point presentations.

	Text book, Worksheets, video, power point presentations.	T
Date	Topic	
	Lesson Objective:	
18.10.20	- 'buffer solution'	Teacher uses power
	- action of a buffer solution	_ -
Sunday		point presentation that
1-13A	- roles of carbonic acid molecules and hydrogen	contains interactive
4-13B	carbonate ions in controlling	questions.
	the pH of blood.	
Mode of	Success Criteria: students will be able to:	
Teaching –	-define buffer solution	Students solve the
Zoom		worksheet file
	- explain buffer action with an appropriate example.	questions.
	- Will be able to write the equations to show	
	buffer action for an acidic buffer	
	CH ₃ COOH/CH ₃ COO ⁻ Na ⁺ system and the	
	alkaline buffer NH ₃ /NH ₄ ⁺ system.	
	- understand the roles of carbonic acid molecules and	
	hydrogen carbonate ions in controlling	
	the pH of blood	
	Lesson Objective:	
	- calculation of:	
	the pH of a buffer solution given appropriate data	
	concentrations of solutions required to prepare a	
Sunday	buffer solution of a given pH	
18.10.20	r	
2-13 A	Success Criteria: students will be able to:	
2 10 11	Success Official statemes will be able to:	Teacher uses power
	- calculate the pH of buffer given appropriate data	point presentation that
	calculate the pir of ourier given appropriate data	contains interactive
	- show the buffer range in titration curve of weak acid	questions.
20.10.20	and strong base.	questions.
Tuesday	and strong base.	
Tucsuay	-explain the significance of half neutralization point in	
2-13B	terms of buffer solution.	Students solve the
4-13D		worksheet file
Mode of	-Evaluate Ka, Kb from titration curves of weak acid –	
Mode of	strong base titrations.	questions.
Teaching –	ii. determine K_a from the pH at	
Zoom	the point where half the acid is neutralized.	
	- calculate the concentrations of solutions required to	
	prepare a buffer solution of a given pH	
	ı ı	

Wednesday 21.10.20 4-13A 2-13B Mode of Teaching – Zoom	Lesson Objective: -calculations to find pH of given buffer solutions, find the concentration of the different components needed to make a buffer of a given pHenthalpy changes of neutralization values for strong and weak acids.	Teacher uses power point presentation that contains interactive questions that helps to find the concentration.
	Success Criteria: students will be able to: -the concentrations of solutions required to prepare a buffer solution of a given pHUnderstand how to use a weak acid—strong base titration curve to demonstrate buffer action -Evaluate Ka, Kb from titration curves of weak acid— strong base titrationsUnderstand why there is a difference in enthalpy changes of neutralization values for strong and weak acidsCompare the enthalpy changes of neutralization values of strong acid- strong base and strong acid— weak base/ strong base — weak acid. Explain why the values are lower than -57.1kJmol ⁻¹	Students solve the worksheet file questions .

Homework: Solve worksheet file questions and text book questions page 38.

YEAR 13 A/B- CHEMISTRY

WEEK 8 (18th Oct to 22nd October)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic:- Redox titrations and storage cells

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
18.10.20 Sunday 4 13A 5 13B Mode of Teaching – Zoom	Learning Objective: Be able to carry out both structured and non-structured titration calculations including Fe ²⁺ /MnO ₄ ⁻ , and I ₂ /S ₂ O ₃ ²⁻ . Understand the methods used in redox titrations. Learning Outcome: Carry out redox titrations calculations in a problem solving context, e.g. % of Fe in an iron tablet; cleaning solutions, % of copper in an alloy, etc. Write the steps in the procedure, note the end point and using the redox equation to do calculations for different redox reactions.	Teacher uses textbook questions and power point to introduce the concept of redox titrations. Students solve worksheet questions on redox titrations.
18.10.20 Sunday	Learning Objective: Understand the application of electrode potentials to storage cells.	Teacher uses PowerPoint presentation and video or

0.420		
8 13B	Discuss the working of storage cells using the	animation to demonstrate the
	standard potential values.	working of storage cells
21.10.2020	Learning Outcome:	Teacher uses worksheet that
Wednesday	Understand that the energy released on the	contains interactive questions,
5 13A	reaction of a fuel with oxygen is utilized in a fuel	to
Mode of	cell to generate a voltage.	
Teaching –	Knowledge that methanol and other hydrogen-	
Zoom	rich fuels are used in fuel cells is expected.	
	Then rue is the used in rue cents is expected.	
20.10.20	Learning Objective: Reinforce the working of the	Instructions will be given to
Tuesday	methanol fuel cell and other fuel cells which use	complete chapter questions.
1 13B	hydrogen –rich fuels to generate a voltage.	
		Teacher uses past paper
21.10.2020	Know the electrode reactions that occur in a	questions to assess the concept
Wednesday	hydrogen-oxygen fuel cell.	of storage cells.
6 13A	Learning Outcome:	
	Write the equations involved in the working of	
Mode of	these fuel cells.	
Teaching –	Explain the working of the hydrogen- oxygen fuel	
Zoom	cell to generate a voltage.	

HOMEWORK: Solve textbook question page 98