YEAR 12A/B-PHYSICS WEEK 9 (25th October to 28th October) Work sent to the students through: Google classroom / Zoom Learning Platform **Topic:** Electrical quantities Resources: Student text book, worksheet file, interactive power point from Board works and Online animations | Date | Class | Lesson | Lesson objectives & Learning outcomes | Mode of teaching | | |--------------------------------|-------|--------|---|------------------|--| | 25 th Oct
Sunday | 12 A | 8 | Learning objectives: Identify the factors on which resistance of a wire depends Learning Outcomes: Realise that resistance of a wire is directly proportional to its length and inversely proportional to its area of cross section. | ZOOM | Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives. | | | | | Realise that the resistance depends on the material. | | | | | | | Define resistivity of a material & Recognize resistivity as the property of a material | | | | | | | Do a few numerical questions using expression $\rho = RA/l$ | | | | 26 th Oct
Monday | 12 A | 1 | Learning objectives: Design an experiment to determine the resistivity of with wires of different lengths. Learning Outcomes: Choose the appropriate apparatus required to measure resistance, diameter and length of a thin metal wire. | ZOOM | Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives. | | | | | Identify the dependent variable, independent variable and control variables to make it a fair test Investigate the relationship between length and resistance of a wire. Use given data to draw resistance against length graph. Higher: Use the gradient of the R-l graph to determine resistivity. Resistivity = gradient x Area of cross section $\pi d^2/4$ | | | |---------------------------------|------|---|---|----|---| | 26 th Oct
Monday | 12 A | 2 | Learning objectives: Design an experiment to determine the resistivity of with wires of different diameters using the simulation http://phet.colorado.edu/en/simulation/resistance-in-a-wire | GC | Teacher GIVES INSTRUCTIONS in GC to complete the work | | 27 th Oct
Tuesday | 12 B | 6 | Learning Outcomes: Identify the dependent variable, independent variable and control variables to make it a fair test Investigate the relation between diameter/ area of cross section and resistance of a wire. Draw Resistance against 1/area of cross section graph. | | HW from worksheet file. | | | | | Higher: Use the gradient of the R-1/A graph to | | | | | determine resistivity | | |--|---------------------------------|--| | | | | | | Resistivity = gradient / length | | | | | | | | | | | | | | | | | | ## YEAR 12 A/B – PHYSICS WEEK 9 - (25th Oct to 29th Oct) - 3 lessons for both batches **Work sent to the students through:** Whatsapp group / Google classroom / Zoom Learning Platform Topic: 2.13/2.17 Adding forces and Resolving vectors 2.18 Projectiles **Resources:** Student text book, worksheet file, interactive power point from Board works and Online animations | Date &
Class | Lesson | Lesson objectives & Learning outcomes | Mode of teaching | | |----------------------|--------|--|------------------|--------------------| | 25 th Oct | | L.O – Solve problems on combining two or more vectors by drawing, and two | | Students will work | | Sunday
- 12 B
27 th Oct
-12A | 3 | Learning outcomes- Recall adding two vectors by constructing an appropriate scale drawing and calculate the resultant of two perpendicular vectors such as displacement, velocity and force. Recall and use a vector triangle or parallelogram law to determine the resultant of two coplanar vectors such as displacement, velocity and force | Zoom | out problems to add two vectors by constructing an appropriate scale drawing and calculate the resultant of two vectors. | |--|---|---|------|---| | 25 th Oct
Sunday
- 12 B | 7 | L.O –Solving problems on resolving a vector into two components at right angles to each other by drawing and by calculation Learning outcomes- Appreciate the use of scale diagram to find the resultant of two vectors Recall that any vector can be split into two components at right angles to each other Calculate the values of the component vectors in any such right-angled pair | Zoom | Students will solve problems to calculate the values of the component vectors by splitting the vector into two components at right angles to each other | | 28 th Oct
Wednesd
ay -12 B | 3 | L.O: Understand how to make use of the independence of vertical and horizontal motion of an object projected from a height Learning outcomes- Derive expressions for time of flight, range and maximum height. Calculate the height and range by using equations of motion for vertical and horizontal projection. Describe and explain the effect of external forces on each component | Zoom | Teacher illustrates how the vertical and horizontal components are varying as a body is projected horizontally. Presents how to calculate the height and range by using equations of motion for vertical and horizontal projection. |