YEAR 11 A/D/E – CHEMISTRY (Girls)

WEEK 6 (4th October to 8th October)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic:- GL Practice and Science GL exam

Resources: Text book, Worksheet, Board works power point

Date	Dete				
Date	Торіс				
04.10.20	Learning Objective:	Teacher			
Sunday	To reinforce the concepts of atomic structure, periodic table, structure,	discusses the			
8 th period	bonding and properties of matter, chemical changes and energy	questions in the			
-	changes in Chemistry. GL practice				
Mode of	Learning Outcome:	worksheets			
Teaching:	Students will be able to recall the concepts learned in the previous	assigned and			
Zoom	lessons and apply their knowledge to answer the questions, in the GL	clarifies doubts.			
	practice worksheet.				
	Learning Objective:	Teacher			
05.10.20	To reinforce the concepts of rate and extent of chemical change,	discusses the			
Monday	chemical analysis, chemical and allied industries, earth and	questions in the			
4 th period	atmospheric science, in Chemistry, in the GL practice worksheet.	GL practice			
-	Learning Outcome:	worksheets			
Mode of	Students will be able to recall the concepts learned in the previous assigned and				
Teaching:	lessons and apply their knowledge to answer the questions, in the GL clarifies doub				
Zoom	practice worksheet.				
	Learning Objective: (Assessment)	Teacher will			
07.10.20	To be able to apply the knowledge and understanding of the concepts	conduct the			
Wednesday	of yields, atom economy, concentration, titration calculations and	assessment			
8 th period	molar volume of gases, to answer the questions in the assessment.	through Google			
	Learning Outcome:	forms and			
Mode of	Students will be able to recall the concepts learned in the previous	monitor the			
Teaching:	lessons and apply their knowledge and understanding to answer the	students on			
Zoom	questions, in the assessment.	Zoom.			
		Class Teacher			
08.10.20	Science GL Exam	will conduct the			
Thursday		GL exam and			
5^{th} and 6^{th}		monitor the			
Period		students on			
		Zoom			
	DV . A server the secret is the CL Description and help of				

HOMEWORK: Answer the questions in the GL Practice worksheet.

YEAR 11 B/C/F - CHEMISTRY (Boys)

WEEK 6 (4th October to 8th October)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic:– SC12a: Dynamic Equilibrium

Resources: Text book, Worksheet, Board works power point

Sunday 2 nd Periodchemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.the GL practice worksheets.Mode of Teaching:Learning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Date	Торіс			
Sunday 1 st PeriodTo reinforce the concepts of atomic structure, periodic table, structure, bonding and properties of matter, chemical changes and energy changes in Chemistry.the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teaching: assigned and clarifies doubts.04.10.20 Sunday 2 nd PeriodLearning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheet.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint prester worksheet.05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a	04 10 20	Learning Objective:	Teacher discusses		
1st Periodstructure, bonding and properties of matter, chemical changes and energy changes in Chemistry.the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheet.04.10.20 Sunday 2 nd PeriodLearning Objective: to reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint presentation to explain the doubts.05.10.20 Monday 3rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.06.10.20 The changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment </td <td></td> <td></td> <td></td>					
Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.worksheets assigned and clarifies doubts.04.10.20 Sunday 2 nd PeriodLearning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheetsMode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint progenetation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conduct the assessment06.10.20 <td>•</td> <td></td> <td colspan="3">, 1</td>	•		, 1		
Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous 	1 I CHIOG		-		
Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.clarifies doubts.Uearning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheet.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process.06.10.20 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Mode of	energy enanges in chemistry.			
ZoomStudents will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets04.10.20 Sunday 2 nd PeriodLearning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Objective: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint presentation to for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature b) pressure c) concentration.Mode of reaching: ZoomLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment		Learning Outcome:			
lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.U4.10.20 Sunday 2 nd PeriodLearning Objective: no reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint presentation to GL explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	0	8			
practice worksheet.Teacher discusses04.10.20Learning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint presentation to explain the clarifies doubts.05.10.20 Monday 3rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations and					
Use and spectrationLearning Objective: To reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.Teacher discusses the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint pressure c) concentrationMode of Teaching: ZoomLearning Outcome: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentrationTeacher will conditions for the Haber process as: a) temperature b) pressure c) concentration06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment					
04.10.20 Sunday 2 nd PeriodTo reinforce the concepts of rate and extent of chemical change, chemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.the questions in the GL practice worksheets assigned and clarifies doubts.Mode of Teaching:Learning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature b) pressure c) concentration.Teacher will conditions for the Haber process as: a) temperature b) pressure c) concentrationMode of teaching:Learning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment		1	Teacher discusses		
Sunday 2 nd Periodchemical analysis, chemical and allied industries, earth and atmospheric science, in Chemistry, in the GL practice worksheet.the GL practice worksheets assigned and clarifies doubts.Mode of Teaching:Learning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint preactive worksheet.05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.06.10.20 TuesdayLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	04.10.20		the questions in		
2nd Periodatmospheric science, in Chemistry, in the GL practice worksheet.worksheets assigned and clarifies doubts.Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.worksheets assigned and clarifies doubts.05.10.20 Monday 3rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process as: a) temperature b) pressure c) concentration06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Sunday	-			
Mode of Teaching: ZoomLearning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.clarifies doubts.Use of the second	2 nd Period	atmospheric science, in Chemistry, in the GL practice worksheet.			
Teaching: ZoomStudents will be able to recall the concepts learned in the previous lessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint05.10.20 MondayLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment			assigned and		
Zoomlessons and apply their knowledge to answer the questions, in the GL practice worksheet.Teacher uses powerpoint05.10.20 Monday 3rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process as: a) temperature b) pressure c) concentration06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Mode of	C C			
practice worksheet.Teacher uses 05.10.20 Monday 3 rd PeriodLearning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Teaching:	Students will be able to recall the concepts learned in the previous			
Learning Objective: Recall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.Teacher uses powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	Zoom				
05.10.20 Monday 3rd PeriodRecall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.powerpoint presentation to explain the conditions for the Haber process.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment		practice worksheet.			
05.10.20 Monday 3rd PeriodRecall the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst. Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.powerpoint presentation to explain the conditions for the Haber process as: a) temperature 450 °C b) pressure c) concentration.powerpoint presentation to explain the conditions for the Haber process.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment		Learning Objective:	Teacher uses		
Monday 3 rd Perioda) temperature 450 °C Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.presentation to explain the conditions for the Haber process.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationpresentation to explain the conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment	05.10.20				
3rd PeriodPredict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration.explain the conditions for the Haber process.Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationexplain the conditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment					
Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationConditions for the Haber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment			-		
Mode of Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationHaber process.06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment					
Teaching: ZoomLearning Outcome: Analyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationImage: Image: Im	Mode of				
ZoomAnalyse the conditions for the Haber process as: a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment		Learning Outcome:	1		
a) temperature 450 °C b) pressure 200 atmospheres c) iron catalyst Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationImage: Concentration of concentration of concentration of concentration of concentration of concentration of conduct the concepts of yields, atom economy, concentration, titration calculations and of concentration of conduct the concentration of conduct the concentration of conduct the concentration of conduct the conduct the conduct the concentration of conduct the concentration of conduct the concentration of conduct the concentration of conduct the concentration conduct the concentration of conduct the concentration of conduct the concentration of conduct the concentration conduct the concentration conduct the concentration of conduct the concentration of conduct the concentration concentration conduct the concentration concentration conduct the concentratic conduct the concentration conduct th	Zoom	0			
Explain how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentrationTeacher will conduct the assessment06.10.20 Tuesday 7 th PeriodLearning Objective: (Assessment) To be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andTeacher will conduct the assessment					
changes in:a) temperatureb) pressurec) concentration06.10.20Learning Objective: (Assessment) Tuesday 7 th PeriodTeacher will conduct the assessmentTeacher will conduct the assessment					
Tuesday 7th PeriodTo be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andconduct the assessment		changes in: a) temperature b) pressure c) concentration			
Tuesday 7th PeriodTo be able to apply the knowledge and understanding of the concepts of yields, atom economy, concentration, titration calculations andconduct the assessment	06.10.20	Learning Objective: (Assessment)	Teacher will		
7 th Period of yields, atom economy, concentration, titration calculations and assessment					
	7 th Period				
	, 101100	molar volume of gases, to answer the questions in the assessment.	through Google		

Mode of Teaching: Zoom	Learning Outcome: Students will be able to recall the concepts learned in the previous lessons and apply their knowledge and understanding to answer the questions, in the assessment.	forms and monitor the students on Zoom.
08.10.20 Thursday 4 th Period Mode of	 Learning Objective: To answer the questions, on Dynamic Equilibrium, in the worksheet. Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by answering the questions in the 	Worksheet assigned through GC. Instruction will be given in the GC
Teaching: GC	worksheet.	to complete the worksheet.

HOMEWORK: Complete the textbook questions SC12a:Dynamic equilibrium- page 94 - 95

YEAR 11 G/H–CHEMISTRY (IGCSE)

WEEK 6 (4th Oct to 8th Oct)

Work Sent to the students through Google classroom/Zoom Learning Platform Unit 3 – Chapter 20: Rates of reaction & GL Practice

Topic: Investigating the factors affecting the rate of reactions **Resources:** Text book, Worksheet, IGCSE science free lesson video, power point.

Date	Lesson	Торіс	Mode of Teaching	
04.10.2020 Sunday	1 11 H 6 11G	 Lesson Objective: Explain effects of changes in surface area of a solid, concentration of a solution, pressure of a gas and temperature on the rate of a reaction in terms of particle collision theory Learning Outcome: State the collision theory of reactions. Demonstrate the meaning of successful collisions. Discuss the role of energy in collisions during the reaction. Correlate the collision frequency with rate of a reaction. 	Zoom	Teacher uses PowerPoint presentation that contains interactive questions to explain the factors affecting rate of reactions.

05.10.2020 Monday	2 11H 5 11G	Lesson Objective: Assessment 1 on the topic calculations and energetics Learning Outcome: Reinforce and assess the attainment of the concepts related to calculations involving, moles, reacting masses and limiting reactant. Also analyse the skill to interpret the	Zoom	Teacher uses Google forms questions.
06.10.2020 Tuesday	3 11H 1 11G	 experiments in energetic. Lesson Objective: To revise and reinforce previously studied concepts as GL practice. Learning Outcome: To assess the understanding and application of chemical calculations involving reacting masses and different types of bonding. 	Zoom	Teacher uses google forms to practice multiple choice questions.
	411H 2 11G	 Lesson Objective: To revise and reinforce previously studied concepts as GL practice. Learning Outcome: To assess the understanding and application of concepts such as atomic structure, acids and bases and pH of substances. 	Zoom	Instruction will be given in the GC room to complete the worksheet questions.
08.10. 2020 Thursday	5 11H 4 11G	 Lesson Objective: Sketch energy profile diagrams showing ∆H and activation energy. Know that a catalyst is a substance that increases the rate of a reaction, but is chemically unchanged at the end of the reaction Learning Outcome: Define catalyst. Recognize catalysts in the reaction.` Discuss the effect of catalyst on the rate of reaction. 	GC	Teacher uses PowerPoint presentation that contains interactive questions. Teacher uses textbook and worksheet questions to understand the concept of catalysts.

Draw and explain reaction profile	
diagrams showing ΔH and activation	
energy	