YEAR 13 A /B -CHEMISTRY

WEEK 6 (4th October to 8th October)

Topic: Acid and Base equilibrium.

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point presentations.

Date	Торіс	
04.10.20 Sunday 1-13A 4-13B Mode of Teaching – Zoom	Lesson Objective: - define the term pH -calculate pH from hydrogen ion concentration, and vice versa - calculate the pH of an aqueous solution of a strong acid - deduce the expression for the acid dissociation constant, <i>K</i> a, for a weak acid and carry out relevant calculations - calculate the pH of a weak acid making relevant assumptions - define the term p <i>K</i> a. Success Criteria: -define pH - calculate the pH of strong acid -deduce expression for Ka and calculate its value -calculate value of pH for weak acids - define pKa, do calculations	Teacher uses power point presentation that contains interactive questions. Students solve the worksheet file questions and upload in the google classroom at end of the lesson
Sunday 04.10.20 2-13 A	Lesson Objective: - define the ionic product of water, <i>Kw</i> - define the term p <i>K</i> w	Teacher uses powerpoint presentation that contains interactive questions.
06.10.20 Tuesday 2-13B	 calculate the pH of an aqueous solution of a strong base using <i>K</i>w. Success Criteria: define the ionic product of water, <i>K</i>w 	Students solve the worksheet file questions and upload in the google classroom at end of the lesson.
Mode of Teaching – Zoom	 define pKw calculate the pH of an aqueous solution of a strong base using Kw. 	

Wednesday	Lesson Objective:	Teacher uses power point
07.10.20	Analyse data from the following experiments:	presentation that contains
	(i) measuring the pH of equimolar aqueous	interactive questions.
4- 13A	solutions of strong and weak acids	
- 1011	(ii) measuring the pH of equimolar aqueous	
2-13B	solutions of strong and weak bases	
2-13D	e	Students solve the medical set
N. 1	(iii) measuring the pH of equimolar aqueous	Students solve the worksheet
Mode of	solutions of various salts	file questions and upload in
Teaching –	(iv) comparing the pH of aqueous solutions of	the Google classroom at end
Zoom	strong and weak acids after	of the lesson
	dilution	
	• calculate <i>K</i> a for a weak acid from experimental	
	data given the pH of an aqueous solution	
	containing a known mass of acid.	
	Success Criteria:	
	calculate pH from $[H^+(aq)]$ and $[H^+(aq)]$ from pH	
	for:	
	(i) strong monobasic acids,	
	(ii) weak monobasic acids,	
	(iii) strong bases, using Kw.	
	Calculate pH of solutions formed after mixing	
	known volumes of solutions.	
	Calculate Ka for a weak acid, given appropriate	
	data;	
	Calculate the pH of solutions after dilutions.	
	Calculate the concentration of [H ⁺] of the acid	
	solution, use the $[H^+]$ and the assumptions used	
	in the Ka expression to calculate the value of Ka	
	with units.	

Homework : Solve worksheet file questions and text book questions page 34.

YEAR 13 A/B- CHEMISTRY

WEEK 6 (4th October to 8th October)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic:- Standard Electrode potential

Resources: Text book, Worksheet, Video, Boardworks, powerpoint

Date	Торіс	
 4.10.20 Sunday 4 13A 5 13B Mode of Teaching – Zoom 	Learning Objective: Know what is meant by the term 'standard electrode potential', E^{θ} . Know that the standard electrode potential, E^{θ} , refers to conditions of: i. 298 K temperature ii. 100 kPa pressure of gases iii. 1.00 mol dm ⁻³ concentration of ions. Learning Outcome: Assign oxidation numbers to the different elements using the rules. Explain oxidation as increase in oxidation number and reduction as decrease in oxidation number. Define standard electrode potential for an electrode. Explain the conditions maintained for the standard electrode potentials in terms of temperature, pressure and concentrations.	Teacher uses textbook questions and power point to introduce the concept of electrode potential.
4 .10.20 Sunday 8 13B 7.10.20 Wednesday 5 13A Mode of Teaching – Zoom	 Learning Objective: Know the features of the standard hydrogen electrode and understand why a reference electrode is necessary. Understand that different methods are used to measure standard electrode potentials of: metals or non-metals in contact with their ions in aqueous solution ions of the same element in different oxidation states. Learning Outcome: Discuss the setup of the standard electrode potential and its use as the reference. Predict how to measure, using a hydrogen electrode, standard electrode potentials of: metals or non-metals in contact with their ions in aqueous solution 	Teacher uses PowerPoint presentation and video to demonstrate the different half cells. Teacher uses worksheet that contains interactive questions, to explain the the cell notation and half equations.

6.10.20	Learning Objective: Understand that standard	Instructions will be given
Tuesday	electrode potentials can be listed as an	to complete chapter
1 13B	electrochemical series.	questions.
	Learning Outcome:	
7.10.20	Reinforce the concepts such as	Teacher uses text book
Wednesday	• definition of oxidation and reduction in	questions (page 89)
6 13A	terms of changes in oxidation number, applied to s -, p - and d -block elements.	based on.
Mode of Teaching –	 standard electrode potential and its use as the reference. 	
Zoom	 the different methods are used to measure standard electrode potentials. Define electrochemical series. 	

HOMEWORK: Solve textbook question page 104