YEAR 13 - MATHEMATICS (Week 6)

Subject	Mathematics
Class/ Section	Year 13 – Batch A, B and C
Week	4 th October to 8 th October 2020
Work send to students by	Group email / Google classroom / Zoom
Total number of lessons per week	3
Units	Pure Mathematics – Year 2 Chapter 3 – Sequences and Series Chapter 4 – Binomial Expansion
Lessons 1 –Live Zoom lesson	3.8 – Modelling with series
	<u>Learning objective</u> – To model real life situations with sequences and series.
	Intended Learning Outcomes
	Students will be able to understand that geometric sequence and
	series can be related to real life situations. For example if a person's
	salary increases by the same percentage every year, their salary each
	year would form a geometric sequence and the amount they had been
	paid in total over n years would be modelled by the corresponding
	geometric series.
Tasks	To complete the questions assigned from the Textbook (pdf) in their notebook. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning.
D	1 Power point presentation
Resources	2 Pure Mathematics Year 2
	3 <u>https://www.physicsandmathstutor.com/</u>
	4 <u>https://www.drfrostmaths.com/</u>
	5 <u>https://www.examsolutions.net/</u>

Lessons 2 –Live Zoom lesson	4.1 – Expanding $(1 + x)^n$ 4.2 – Expanding $(a + bx)^n$
	<u>Learning objective</u> – To expand $(1 + x)^n$ for any rational constant <i>n</i> and determine the range of values of <i>x</i> for which the expansion is valid. To expand $(a + bx)^n$ for any rational constant <i>n</i> and determine the range of values of <i>x</i> for which the expansion is valid.
	Intended Learning Outcomes Students will be able to understand that if n is a natural number they can find the binomial expansion for $(a+bx)^n$ using the formula: $(a+b)^n = a^n + {n \choose 1} a^{n-1}b + {n \choose 2} a^{n-2}b^2 + \dots + {n \choose r} a^{n-r}b^r + \dots + b^n$ If n is a fraction or a negative number students will be made to understand to use a different version of the binomial expansion. Students will be able to understand that the binomial expansion $(1+x)^n$ can be used to expand $(a+bx)^n$ for any constants a and b, by just taking a factor of a^n out of the expression: $(a+bx)^n = \left(a\left(1+\frac{b}{a}x\right)\right)^n = a^n \left(1+\frac{b}{a}x\right)^n$. The expansion of $(a+bx)^n$, where n is negative or a fraction, is valid for $\left \frac{b}{a}x\right < 1 \text{ or } x < \left \frac{a}{b}\right $
Tasks	To complete the questions assigned from the Textbook (pdf) in their notebook. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning.
Resources	 Power point presentation Pure Mathematics Year 2 <u>https://www.physicsandmathstutor.com/</u> <u>https://www.drfrostmaths.com/</u> <u>https://www.examsolutions.net/</u>
Lessons 3 –Live Zoom lesson	4.3 – Using partial fractions
	<u>Learning objective</u> – To use partial fractions to expand fractional expressions
	Intended Learning Outcomes Students will be able to understand that partial fractions can be used to simplify the expansions of more difficult expressions. They need to understand, while finding the validity of the expansion, if two or more ranges of values of x are involved; they need to go for the intersection of those ranges.
Tasks	To complete the questions assigned from the Textbook (pdf) in their notebook. Students will be put in break out rooms during Zoom lesson to encourage collaborative learning.
Resource	 Power point presentation Pure Mathematics Year 2 <u>https://www.physicsandmathstutor.com/</u> <u>https://www.drfrostmaths.com/</u> <u>https://www.examsolutions.net/</u>