YEAR 12 A/ B – PHYSICS

WEEK 6 (4th October to 8th October) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic:_Solid Materials

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date	Class	Lesson	Lesson objectives & Learning	Mode of	
			outcomes	teaching	
4 th Oct Sunday 6 th Oct Tuesday	12 A 12 B	8	OutcomesDetermineYoung's Modulus fromstress-strain graphsAnalyse the planfrom the last lessonto investigate the relation betweenstress and strain of a wire and hencedetermine the young's ModulusLearning OutcomesIdentify the gradient of stress-straingraph as Young's Modulus and areaunder the graph as Energy density.Realise how to use the data collectedfrom the YM experiment to draw anappropriate graph.At extension level; Calculate YM fromF- e graph	Zoom	Teacher uses interactive power point presentation and breakout sessions for students to collaborate and attain the objectives. Work will be assigned in GC to turn in the graph work.
5 th Oct Monday 8 th Oct Thursday	12 A 12 B	1	Learning objectives: Discuss how the material properties such as stiffness, density, resistivity and strength relate to the microscopic structure of the material. Use the knowledge gained so far to sketch a stress-strain graph for brittle/ductile material and label appropriately.	Zoom	Teacher uses interactive power point presentation and breakout sessions for students to collaborate and attain the objectives.
y			Learning Outcomes : Describe material behaviour based on		HW from worksheet file.

			a stress–strain graph Sketch a stress–strain graph from descriptions of material properties Research the selection of materials for turbine blades/fishing rods etc		
5 th Oct Monday	12 A	2	Learning objectives: Extend the study to the material properties of rubber	Zoom	Teacher uses interactive power point presentation and breakout sessions for
8th Oct Thursday	12 B	4	Learning Outcomes : Draw the F-e graph for rubber for loading and unloading cycle Be able to determine the energy stored in the rubber from the hysteresis loop.		students to collaborate and attain the objectives.

YEAR 12 A/ B – PHYSICS

WEEK 6 (4th Oct to 8th Oct) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: 2.16 Kinematic equations

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date	Class	Lesson	Lesson objectives & Learning	Mode of	
			outcomes	teaching	
6 th Oct			L.O – Assessment on Units,		
Tuesday	12 A	6	estimation, velocity and		Assessment given
			acceleration, motion graphs	Zoom	in google form
7 th Oct	12 B	4			- 20 marks
Wednesday			Learning outcomes-		

			• Assessing student's knowledge on different concepts of units, estimation, velocity and acceleration and motion graphs		
4 th Oct Sunday 8 th Oct Thursday	12 B 12 A	7	 L.O – Derive, from the definitions of velocity and acceleration, equations that represent uniformly accelerated motion in a straight line Learning outcomes- Use the equations for uniformly accelerated motion in one dimension: v = u + at s = ut + 1/2 at² v² = u² + 2as Identify negative displacement, velocity and acceleration in different situations. 	Zoom	Carried forward from previous week. Teacher uses interactive power point presentation to explain the concepts. Recall the eqns of uniform acceleration and can apply them in calculations involving motion in straight lines.
7 th Oct Wednesday 8 th Oct Thursday	12 B 12 A	3 2	 L.O : Solve problems using equations that represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance. Learning outcomes- Recall the kinematic equations for uniformly accelerated motion. Calculate unknown variables using the kinematics equations. 	GC	Worksheet prepared in two levels to practise using the equations for uniform acceleration. Teacher will post the worksheet in the GC. Instruction will be given in the Google classroom to complete the Worksheet.