YEAR 13 A/ B – PHYSICS

WEEK 6 (4th Oct to 8st Oct) 3 lessons for both batches

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: Circular Motion & Thermodynamics

Date	Class	Lesson objectives & Learning outcome	Mode of	
	& esson		teaching	
5th Oct Monday	13 B - 6	Learning objectives : Worksheet discussion on circular motion		Teacher uses power point presentation
6th Oct Tuesday	13 A - 4	Learning Outcomes : Be able to identify the gaps in understanding the concepts. Revise the numerical formulas to calculate Centripetal force.	Zoom	and breakout sessions for students to collaborate and attain the objectives.
5 th Oct Monday	13 B -7	Learning objectives : Explain the concept of internal energy as the random distribution of potential and kinetic energy amongst molecules	zoom	Teacher uses power point presentation
8th Oct Thursday	13 A - 1	 Explain the difference between heating and working Learning Outcomes : Define the internal energy of a material in terms of the KE and PE of its particles. Explain that thermal energy is transferred from a region of higher temperature to a region of lower temperature. Understand that regions of equal temperature are in thermal equilibrium. 		and breakout sessions for students to collaborate and attain the objectives.
7th Oct Wednesd ay	13 B - 3	Learning objectives: Describe how there is an absolute scale of temperature that does not depend on the property of any particular substance (the thermodynamic scale and the concept of absolute zero)	Zoom & GC	Teacher uses Google Classroom and breakout
8th Oct Thursday	13 A - 2	Learning Outcomes : Convert temperatures measured in kelvin to degrees Celsius (or vice versa):		Zoom for students to collaborate and attain the

T (K)= θ (°C) + 273.15.	objectives.
State that absolute zero is the temperature at which a substance has minimum internal	
energy.	

YEAR 13 A/ B – PHYSICS

WEEK 6 (4th Oct to 8th Oct) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - 7.2 - Capacitors

Resources: Student text book, interactive power point, Board works, worksheet file and online videos/animations

Date	Lesson	Lesson objectives & Learning outcome	Mode of	
6 th Oct Tuesday - 13 A 6 th Oct Tuesday - 13 B	5 6	 L.O – Assessment on the topic 7.1 Electric fields Learning outcomes- Assessing student's knowledge on different concepts of nelectric fields. 	Zoom	Assessment given in google form - 20 marks
5 th Oct Monday - 13 A 8 th Oct Thursday - 13 B	1 3	 L.O – Investigate and recall that the growth and decay curves for resistor–capacitor circuits are exponential, and know the significance of the time constant RC Learning outcomes- Describe the charging and discharging of a capacitor. Sketch graphs that show the variation with time of potential difference, charge and current for a capacitor discharging through a resistor. Define the time constant of a circuit Select and use time constant = CR 	Zoom	Teacher uses boardworks & power point presentation to explain the concepts and guide students to understand the exponential decay process.
5 th Oct Monday - 13 A 8 th Oct Thursday	2 4	L.O – Recognise and use the expression $Q = Q_0 e^{-t/RC}$ and derive and use related expressions, for exponential discharge in RC circuits, for example, $I = Io e^{-t/RC}$ and $V = V_0 e^{-t/RC}$	Zoom	Teacher uses boardworks & power point presentation to

- 13 B	 Learning outcomes- Derive and use the expressions for exponential discharge in RC circuits – Q = Q₀ e^{-t/RC} I = Io e^{-t/RC} and V = Vo e^{-t/RC} 	explain the concepts and guide students to solve problems from worksheet file.
	 Discuss the factors that affect the time taken for a capacitor to discharge. Plan an experiment to investigate discharging of a capacitor and predict the variation of Q, I and V for the capacitor. Estimate the area under <i>I</i> - <i>t</i> curve as the total charge of a capacitor that is discharging. 	