YEAR 13 A /B -CHEMISTRY

WEEK 11 (8th Nov to 12th November)

Topic: further organic chemistry.

Carbonyl compounds and their properties.

Work sent to the students through Google classroom / Zoom Learning Platform

Resources:	Text book.	Worksheets.	video.	power poir	t presentations.
itesources.	TCAT DOOK,	worksheets,	viuco,	power pom	i presentations.

Date	Торіс	
	Lesson Objective:	
8.11.20	Racemic mixture and its correlation to SN1 and SN2	Teacher uses
Sunday	reactions	power point
1-13A		presentation that
4-13B	Success Criteria: students will be able to:	contains
	Predict why mixture of optical isomers may be optically	interactive
Mode of	active/ inactive. Correlate that $S_N 2$ results in inversion of	questions.
Teaching –	rotation and S _N 1 forms a racemic mixture.	•
Zoom	Write the mechanism to prove the inversion of optical	
	rotation	Students solve the
		worksheet file
	Write the addition to carbonyl compounds to show racemic	questions.
	mixture formation	1
Sunday	Lesson Objective:	Teacher uses
8.11.20	Write the general formula for simple	power point
2-13 A	aldehydes and ketones, CnH _{2n} O	presentation that
		contains
	Write functional group isomers for carbonyl compounds	interactive
		questions.
	Write systematic names of given carbonyl compounds.	
10.11.20		
Tuesday	Success Criteria: students will be able to:	
	-Write the general formula for simple	Students solve the
2-13B	aldehydes and ketones, $CnH_{2n}O$	worksheet file
		questions.
Mode of	- Predict the molecular and structural formulae of simple	
Teaching –	aldehydes and ketones (including branched structures) with	
Zoom	up to three /six carbons in the main chain	
	-Use IUPAC rules to name simple aldenydes and ketones	
	(including branched structures) with up to three/6 carbon	
	atoms in main chain	
Wednesday	Lesson Objective:	
11 11 20	Physical properties of aldehydes and ketones	Teacher uses
4-13A	This see properties of indengues and ketones	nower point
2-13R	Success Criteria: students will be able to:	presentation that
	-understand that aldehydes and ketones have permanent	contains
	dinoles	interactive
	apores.	menuenve

Mode of	-Ketones do not form intermolecular hydrogen bonds and	questions that
Teaching -	this affects their physical	helps to predict
Zoom	properties	the physical
		properties of
	-aldehydes can form hydrogen bonds with water and this	aldehydes and
	affects their solubility	ketones.
	Show the polarity of the carbonyl group.	
	-Predict the physical properties of aldehydes and ketones: their solubility & boiling points – compare to alcohols/alkanes of similar size.	Students solve the worksheet file questions.

Homework : Solve worksheet file questions and text book questions page 177.

YEAR 13 A/B- CHEMISTRY

WEEK 11 (8th Nov to 12th Nov)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic:- Further Kinetics

Resources: Text book, Worksheet, Video, Board works, power point

Date	Торіс	
8.11.20	Learning Objective:	Teacher uses
Sunday	1. understand the terms:	PowerPoint
4 13A	i rate of reaction	presentation and video
	ii rate equation	or animation to
	iii order with respect to a substance in a rate equation	demonstrate any
5 13B	iv overall order of reaction	reaction to explain the
	v rate constant	different terms.
Mode of	vi half-life	
Teaching –	vii rate-determining step	Teacher uses
Zoom	viii activation energy	worksheet that
	ix heterogeneous and homogenous catalyst	contains interactive
		questions, to solve the
	2.to determine and use rate equations of the form:	questions on rate of
	rate = $k[A]m[B]n$, where m and n are 0, 1 or 2	reaction, rate
		equation, order and
	Learning Outcome:	rate constant,
	Explain and use the terms: rate of reaction, rate equation,	activation energy.
	order and rate constant, activation energy	
	Explain and use the term: half life and rate determining	
	step;	
	Explain with example homogeneous catalyst: Γ and $S_2O_8^{2-2}$	
	and heterogeneous catalyst: Fe in Haber process.	
	Write the rate equation for a given reaction.	

8.11.20	Learning Objective: Determine and use rate equations of	
Sunday	the form.	Teacher uses textbook
8 13B	rate $-k[\Lambda]m[B]n$ where m and n are 0, 1 or 2	questions and power
0 130	$aic - \kappa[A]m[D]n$, where m and n are 0, 1 of 2	point to introduce the
		point to introduce the
	Learning Outcome:	concept of rate
11 11 2020	Write rate equations of the form:	equations.
11.11.2020	rate = $k[A]m[B]n$, where m and n are 0, 1 or 2	
Wednesday	for all the reactions.	Students write rate
5 13A		equations for different
Mode of		reactions and discuss
Teaching –		for the whole class.
Zoom		
10.11.20	Learning Objective: Understand experiments that can be	Question from
Tuesday	used to investigate reaction rates by:	textbook and
1 13B	i an initial-rate method, carrying out separate experiments	worksheet are given to
	where different	solve.
11.11.2020	initial concentrations of one reagent are used	
Wednesday	A 'clock reaction' is an acceptable approximation of this	Discuss the answers
6 13A	method	for the whole class.
Mode of	Learning Outcome:	
Teaching –	Pupils vary concentration of Na ₂ S ₂ O ₂ and time how long it	
Zoom	takes for sulphur precipitate to form $-S$ clock	
20011	and for surplui procipitute to form to clock	
	Also use jodine clock method	
	Predict from a concentration time graph the rate of a	
	reaction	
	ICaction	

HOMEWORK: Solve textbook question page 147