YEAR 13A/ B -PHYSICS

WEEK 13 (22nd November to 26th November) (3 lessons)

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: 10- Nuclear Radiation

Date	Class	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
23rd Nov Monday	13 B	6	Learning objectives: Recap half life, activity and uses the exponential decay equation to derive the relation between the two.	Zoom	Teacher uses power point presentation and breakout sessions for
24 th Nov Tuesday	13A	4	Learning Outcomes : Simulate radioactive decay using, for example, dice Determine the half lives of radioactive isotopes graphically Recognise and use the expressions for radioactive decay: $\lambda = \ln 2 / t^{1/2}$		students to collaborate and attain the objectives. <u>https://www.ran</u> <u>dom.org/dice/</u> for virtual dice rolling and collecting data.
23 rd Nov Monday	13 B	7	Learning objectives: Explain the concept of nuclear binding energy, and recognise and use the expression	zoom	Teacher uses power point presentation and
26th Nov Thursday	13A	1	$\Delta E = c^2 \Delta m$ and use the non SI atomic mass unit (u) in calculations of nuclear mass (including mass deficit) and energy Learning Outcomes : Realize that mass can be converted into energy in nuclear reactions or vice versa. Define annihilation. Define mass defect, binding energy and binding energy per nucleon. Calculate the mass defect and convert the mass defect to the binding energy in MeV by use of Einstein's equation $\Delta E = c^2 \Delta m$		breakout sessions for students to collaborate and attain the objectives.

25 th Nov Wednes day	13 B	3	Learning objectives : Describe the principles of fission and fusion with reference to the binding energy per nucleon curve.	zoom	
26th Nov Thursday	13 A	2	Explain in terms of stability with reference to the curve why fission and fusion occur.		
			Learning Outcomes :		
			Discuss general shape of the binding energy per nucleon curve		
			Describe nuclear stability in terms of binding energy per nucleon.		
			Compare the stability of different nuclei by using binding energy per nucleon.		
			Use binding energy to predict if reactions will happen spontaneously		

YEAR 13 A/ B -PHYSICS

WEEK 13 - (22nd Nov to 26th Nov) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - 7.34 – Generating electricity

Resources: Student text book, interactive power point, Board works, worksheet file and online videos/animations

Date	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
23 rd Nov	1	<i>Carried forward from last week</i> Learning Objective: Understand how to use	Zoom	Teacher uses ppt,
Monday - 13 A	-	Faraday's law to determine the magnitude of induced emf and use the equation that		board works and online simulation
	6	combines Faraday's law and Lenz's law.		to explain Faraday's law and
24 th Nov Tuesday - 13 B		Learning Outcome:		Lenz's law. Emphasise throughout the

		 Realise that induced e.m.f is proportional to rate of change of flux and acts opposite to the change. Use the expression ε = - dΦ/dt and explain how it is a consequence of Faraday's and Lenz's laws. Derive ε =B (dA/dt) = BLv for a wire moving across a field. 		discussions that the induced e.m.f. only exists while the flux linkage is changing.
23 rd Nov Monday - 13 A 26 th Nov Thursday - 13 B	2 3	 L.O – Explain simple applications of electromagnetic induction Learning outcomes- Discuss some applications of electromagnetic induction, e.g. dropping a magnet through a copper tube, braking a flywheel, magnet on a spring or pendulum type oscillation, Explore various real life examples eg e.m.f. induced in an aircraft wing in flight o e.m.f. induced in a coil by changing flux o opening or closing a metal window o electromagnetic braking o induction torch. 	Zoom	Teacher ask students to explain what is happening in the various applications of electromagnetic induction. Provide worksheet with problems to solve using both laws.
24 th Nov Tuesday - 13 A 26 th Nov Thursday - 13 B	5	 L.O – Describe the principle of ac generator on the basis of electromagnetic induction with movement. Describe the principle of a transformer on the basis of mutual induction. Learning outcomes- Discuss the principle and working of ac generator on the basis of electromagnetic induction Lists the factors affecting the induced current in a coil rotating in a field and predict how the ac waveform changes when each of these factors is changed. Describes the working of a transformer, indicating the changes in voltages, current and power and energy losses. Deduce an expression for the efficiency of a transformer Derive the equations V_s/V_p = N_s/N_p and V_s I_s = V_p I_p for 100% efficiency. 	Zoom	Teacher uses ppt, board works and online simulation to explain the shape of the variation of the alternating current and p.d. due to the movement of coil in the magnetic field. Discuss the sources of energy loss in a practical transformer

<u>HOMEWORK</u>: Complete the textbook Qs: Page 72 and worksheet file questions