YEAR 9 A- F - CHEMISTRY - II Term

WEEK 23 (31st Jan to 04th Feb)

Work Sent to the students through Group email/ Google classroom

Topic:— SC5a — Ionic Bonds

Resources: Text book, Worksheet, Boardworks, GCSE science free lesson video, power point.

Date	Lesson	Торіс	Mode of Teaching	
31 st Jan Sunday (girls)	6	Learning Objective: Explain how ionic bonds are formed by the transfer of electrons between atoms to produce cations and anions, including the use of dot and cross diagrams Success Criteria:	5	
01 st Feb Monday (boys)	7	 Describe the electron arrangements of sodium and chlorine. Describe how an electron is transferred to chlorine from sodium to form two charged particles, called ions, that attract each other. Know that compounds made from a metal and a non-metal are made from ions. Use dot and cross diagrams to explain how ionic bonds are formed. 	Zoom	PPT/Video on Ionic Bonds
01 st Feb Monday (girls) 01 st Feb Monday– (boys)	8	 Learning Objective: Recall that an ion is an atom or group of atoms with a positive or negative charge Calculate the numbers of protons, neutrons and electrons in simple ions given the atomic number and mass number Success Criteria: Define ion. Explain the difference between an atom and an ion. Calculate the protons, neutrons and electrons of an ion. Draw the electronic structure of few ions. Calculate the subatomic particles in simple ions using the atomic and mass number from the periodic table. 	Zoom	PPT and Video on Ionic Bonds
01 st Feb Monday (girls) 03 rd Feb Wednesday – (boys)	1	 Learning Objective: Explain the formation of ions in ionic compounds from their atoms, limited to compounds of elements in groups 1, 2, 6 and 7 Success Criteria: Distinguish that metals lose electrons to form positive ions, whereas non-metals gain electrons to form negative ions. Predict that Group 1 metals form 1+ ions. 	GC	Worksheet SC5a

 Draw diagrams to explain how Na donates / transfers electron to Cl, so both achieve noble gas electronic structure. Reason out why the noble gases are unreactive. 		
---	--	--

Homework: Do Questions S1 and E1 on page 35 of the textbook in your note book

YEAR 10 B/C/F-CHEMISTRY (Boys)

WEEK 23 (31st Jan to 4th Feb)

Work Sent to the students through Google classroom

Topic: Electrolysis

Resources: Text book, Worksheet, power point.

Date	Lesson	Topic	Mode of	
			Teaching	
		Learning Objective:		Teacher shows a
31/1/2021	0	Core Practical -Investigate the change in pH on		video on the change
Sunday		adding powdered calcium hydroxide or calcium	Google	in pH on adding
1/2/2021	100	oxide to a fixed volume of dilute hydrochloric acid.	Meet	powdered calcium
1/2/2021	1&2	Learning Outcome:		hydroxide or calcium oxide to a
Monday		• Recall pH.		fixed volume of
		• Analyse that a neutral solution has a pH of 7 and		dilute hydrochloric
		that acidic solutions have lower pH values and		acid.
		alkaline solutions higher pH values.		Students complete
		•Observe the change in pH during the addition of		the practical sheets.
		powdered calcium hydroxide or calcium oxide to a		
		fixed volume of dilute hydrochloric acid.		
		• Plot a graph with the data of results obtained.		
		• Analyse the graph obtained.		
		Learning Objective:		Instruction will be
3/2/2021	4	To reinforce the concepts such as ionic bond, ionic		given in the Google
Wednesday		Lattice and properties of ionic compounds.	GC	classroom to
		Learning outcome:		complete the task.
		• Explain the formation of ions in ionic compounds		
		from their atoms.		
		• Deduce the formulae of ionic compounds		
		• Explain the structure and properties of an ionic		
		compound		

Home work: Solve exam style questions: (Pg 63)

YEAR 10 A/D/E-CHEMISTRY (Girls)

WEEK 23 (31st Jan to 4th Feb)

Work Sent to the students through Google classroom

Topic: Electrolysis

Resources: Text book, Worksheet, power point.

Date	Lesson	Topic	Mode of Teaching	
31/1/2021 Sunday	3	Learning Objective: To reinforce the concepts such as ionic bond, ionic Lattice and properties of ionic compounds. Learning outcome: • Explain the formation of ions in ionic compounds from their atoms. • Deduce the formulae of ionic compounds • Explain the structure and properties of an ionic compound.	GC	Instruction will be given in the Google classroom to complete the task
3/2/2021 Wednesday 4/2/2021 Thursday	3 2&3	Learning Objective: Core Practical -Investigate the change in pH on adding powdered calcium hydroxide or calcium oxide to a fixed volume of dilute hydrochloric acid. Learning Outcome: • Recall pH. • Analyse that a neutral solution has a pH of 7 and that acidic solutions have lower pH values and alkaline solutions higher pH values. • Observe the change in pH during the addition of powdered calcium hydroxide or calcium oxide to a fixed volume of dilute hydrochloric acid. • Plot a graph with the data of results obtained. • Analyse the graph obtained.	Zoom	Teacher shows a video on the change in pH on adding powdered calcium hydroxide or calcium oxide to a fixed volume of dilute hydrochloric acid. Students complete the practical sheets.

Home work: Solve exam style questions: (Pg 63)

YEAR 11 A/D/E – CHEMISTRY (Girls)

WEEK 23 (31st January – 4th February)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: SC22a: Alkanes and alkenes

SC22b: Reactions of alkanes and alkenes

Resources: Text book, Worksheet, Boardworks powerpoint

Date	Topic	
31.01.21	Learning Objective:	Teacher
Sunday	Recall the formulae of molecules of the alkanes, methane, ethane, propane	uses
8 th period	and butane, and draw the structures of these molecules, showing all	powerpoint
	covalent bonds.	presentation
Mode of	Explain why the alkanes are saturated hydrocarbons	with
Teaching:	Learning Outcome:	interactive
Zoom	Explain alkanes and alkenes as an example homologous series.	questions
	: that have the same general formula, show similar chemical properties,	
	show a gradation in their physical properties and differ by a CH ₂ unit.	
	Learning Objective:	Teacher
01.02.21	Recall the formulae of molecules of the alkenes, ethene, propene, butene,	uses
Monday	and draw the structures of these molecules, showing all covalent bonds.	powerpoint
4 th period	Explain why the alkenes are unsaturated hydrocarbons, describing that their	presentation
	molecules contain the functional group C=C	with
Mode of	Learning Outcome:	interactive
Teaching:	Identify general formula for homologous series of hydrocarbons written in	questions
Zoom	the form C_nH_n beginning with alkenes, followed by alkanes	
	Define terms saturated and unsaturated as applied to alkanes and alkenes.	
	Learning Objective:	Teacher
03.02.21	Recall the addition reaction of ethene with bromine, showing the structures	uses
Wednesday	of reactants and products, and extend this to other alkenes.	powerpoint
8 th period	Explain how bromine water is used to distinguish between alkanes and	presentation
	alkenes.	with
Mode of	Learning Outcome:	interactive
Teaching:	Plan an experiment to determine the presence of C=C in a variety of	questions
Zoom	organic compounds using bromine water.	
04.02.21	Learning Objective:	Teacher
Thursday	Describe how the complete combustion of alkanes and alkenes involves the	uses .
5 th Period	oxidation of the hydrocarbons to produce carbon dioxide and water.	powerpoint
3.5.3.0	Learning Outcome:	presentation
Mode of	Represent chemical reactions by word equations	with
Teaching:	Represent some chemical reactions by balanced equations, including state	interactive
Zoom	symbols.	questions
04.02.21	Learning Objective: To answer the questions, on Alkanes, alkenes and	Worksheet
Thursday	their reactions, in the worksheet.	assigned
6 th Period	Learning outcomes Students will be able to reinforce the concerts learned	through GC.
Mode of	Learning outcome: Students will be able to reinforce the concepts learned in the provious lesson by ensuring the questions in the worksheet	
Teaching: GC	in the previous lesson by answering the questions in the worksheet.	
	OK. Complete the taythook Oc SC22a. Alkanas and alkanas and SC22b. Paga	

HOMEWORK: Complete the textbook Qs SC22a: Alkanes and alkenes and SC22b: Reactions of alkanes and alkenes.(Pg. 172 – 175)

YEAR 11 B/C/F – CHEMISTRY (Boys)

WEEK 23 (31st January – 4th February)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: SC22a: Alkanes and alkenes

SC22b: Reactions of alkanes and alkenes

Resources: Text book, Worksheet, Board works power point

Date	Topic	
31.01.21	Learning Objective:	Teacher uses
Sunday	Recall the formulae of molecules of the alkanes, methane, ethane, propane	powerpoint
1 st Period	and butane, and draw the structures of these molecules, showing all	presentation
	covalent bonds.	with
Mode of	Explain why the alkanes are saturated hydrocarbons	interactive
Teaching:	Learning Outcome:	questions.
Zoom	Explain alkanes and alkenes as an example homologous series.	
	: that have the same general formula, show similar chemical properties,	
	show a gradation in their physical properties and differ by a CH ₂ unit.	
	Learning Objective:	Teacher uses
31.01.21	Recall the formulae of molecules of the alkenes, ethene, propene, butene,	powerpoint
Sunday	and draw the structures of these molecules, showing all covalent bonds.	presentation
2 nd Period	Explain why the alkenes are unsaturated hydrocarbons, describing that	with
	their molecules contain the functional group C=C	interactive
Mode of	Learning Outcome:	questions
Teaching:	Identify general formula for homologous series of hydrocarbons written	
Zoom	in the form C_nH_n beginning with alkenes, followed by alkanes	
	Define terms saturated and unsaturated as applied to alkanes and alkenes.	
	Learning Objective:	Teacher uses
01.02.21	Recall the addition reaction of ethene with bromine, showing the	powerpoint
Monday	structures of reactants and products, and extend this to other alkenes.	presentation
3 rd Period	Explain how bromine water is used to distinguish between alkanes and	with
	alkenes.	interactive
Mode of	Learning Outcome:	questions
Teaching:	Plan an experiment to determine the presence of C=C in a variety of	
Zoom	organic compounds using bromine water.	
02.02.21	Learning Objective:	Teacher uses
Tuesday	Describe how the complete combustion of alkanes and alkenes involves	powerpoint
7 th Period	the oxidation of the hydrocarbons to produce carbon dioxide and water.	presentation
	Learning Outcome:	with
Mode of	Represent chemical reactions by word equations	interactive
Teaching:	Represent some chemical reactions by balanced equations, including state	questions
Zoom	symbols.	
04.02.21	Learning Objective: To answer the questions, on Alkanes, alkenes and	Worksheet
Thursday	their reactions, in the worksheet.	assigned
4 th Period		through GC.
Mode of	Learning outcome: Students will be able to reinforce the concepts	
Teaching:	learned in the previous lesson by answering the questions in the	
GC	worksheet.	

HOMEWORK: Complete the textbook Qs SC22a: Alkanes and alkenes and SC22b:

Reactions of alkanes and alkenes. (Pg. 172 - 175)

YEAR 11 G/H-CHEMISTRY (IGCSE)

WEEK 23 (31st January to 4th February)

Work Sent to the students through Google classroom/Zoom Learning Platform

Unit 4- Topic: Crude Oil

Resources: Text book, Worksheet, IGCSE science free lesson video, power point.

Date	Lesson	Topic	Mode of Teaching	
31.1.2021 Sunday	1 11 H 6 11G	Learning Objective: know that crude oil is a mixture of hydrocarbons Describe how the industrial process of fractional distillation separates crude oil into fractions. Learning Outcome: Discuss the origin of crude oil and its formation. Describe how the industrial process of fractional distillation separates crude oil into fractions	Google Meet zoom	Teacher uses PowerPoint to reinforce concepts of fractional distillation. Interactive questions to assess the concept of the crude oil formation.
1.2.2021 Monday	2 11H 5 11G	Learning Objective: Know the names and uses of the main fractions obtained from crude oil: refinery gases, gasoline, kerosene, diesel, fuel oil and bitumen. Learning Outcome: Know the different fractions of crude oil and list their uses.	Google Meet zoom	Teacher uses a PowerPoint presentation/video that contains interactive questions on the uses of different fractions.
2.2.2021 Tuesday	3 11H 1 11G	Learning Objective: know the trend in color, boiling point and viscosity of the main fractions Learning Outcome: Explain how the physical properties of hydrocarbons change with molecule size.	Google Meet zoom	Teacher uses a PowerPoint presentation/ video to explain the properties of hydrocarbons.

	411H 2 11G	Learning Objective: know that a fuel is a substance that, when burned, releases heat energy know the possible products of complete and incomplete combustion of hydrocarbons with oxygen in the air Learning Outcome: Predict products of complete and incomplete combustion of hydrocarbons with oxygen in the air	Google Meet zoom	Instruction will be given in the GC room to complete the textbook and worksheet questions.
04.02.21 Thursday	5 11H 4 11G	Learning Objective: understand why carbon monoxide is poisonous, in terms of its effect on the capacity of blood to transport oxygen references to hemoglobin are not required Learning Outcome: Explain the effect of carbon monoxide on the capacity of blood to transport oxygen	Google Meet zoom	Teacher uses PowerPoint presentation to explain the poisonous nature of carbon monoxide.

HOMEWORK: Complete the textbook Questions of fractional distillation.

YEAR 12 G/D – CHEMISTRY

WEEK 23 (31st January to 4th February 2021)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: The effect of changes in conditions on equilibrium composition, Equilibrium constant and reversible reactions in industry.

Resources: Text book, Worksheet file, video, power point presentations.

1.2.2021 Learning Objective	
internal 1.10 predict and justify the quantative effect of a 1 200m Teacher use	0.0
3 12D change in temperature, concentration or pressure on powerpoint	
a homogeneous system in equilibrium.	
2.2.2021 2.Evaluate data to explain the necessity, for many explain the	
Tuesday industrial processes, to reach a compromise between qualitative	
1 12G the yield and the rate of reaction.	cricci or a
Learning Outcome: temperature	e,
•Use the Le Chatelier principle to predict the concentrati	
observations and inferences for the equilibrium pressure on	ı a
reactions i) iodine(I) chloride reacting with homogeneous	ous system
chlorine to form iodine(III) chloride, or in equilibri	um.
ii) $N_2O_4 \rightarrow 2NO_2$	
• Justify the conditions used for the	
-Haber process	
-Contact process	
to get the maximum yields and high rate of reaction	
in terms of enthalpy change and entropy.	
2.2.2021 Learning Objective: Teacher use	es
Tuesday To deduce an expression for Kc, for homogeneous Zoom powerpoint	
2 12G and heterogeneous systems, in terms of equilibrium presentation	
concentrations. contains int	teractive
7 12D Learning outcome: questions.	
Find the relationship between equilibrium	
concentrations K_c and the balanced equation, given	
data for equilibrium concentrations and K_c for a	
range of equilibria. 3.2.2021 Learning Objective:	
3.2.2021 Learning Objective: Wednesday To answer the questions, on the effect of changes in GC Instruction	will be
2 12G conditions on equilibrium composition and equilibrium given in the	
constant, in the worksheet.	•
4.2.2021 Learning outcome: classroom to complete the	
Thursday Students will be able to reinforce the concepts Worksheet	
7 12D learned in the previous lesson by answering the	•
questions in the worksheet.	

HOMEWORK: Complete the textbook questions on page 275

YEAR 12 D/G- CHEMISTRY (TERM II)

WEEK 23 (31st January to 4th February)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic 4 – INORGANIC CHEMISTRY AND THE PERIODIC TABLE

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
02.02.21 Tuesday 8 12D 01.02.21 Monday 6 12G Mode of Teaching – ZOOM	Learning Objective: Know that the mole (mol) is the unit for amount of a substance Be able to use the Avogadro constant, <i>L</i> , (6.02 × 10 ²³ mol ⁻¹) in calculations Learning Outcome: students will be able to: Define mole. Relate mole to Relative molecular mass. Review that 1mol of any substance contains 6.02x10 ²³ atoms/molecules/ions	Teacher uses power point to show rules to recap basics of organic linking to GCSE level. Lesson will be developed with many examples. Some common mistakes and guidance from first term examinations will be discussed.
	Solve calculations based on simple conversion of moles into masses and vice versa	
01.02.21 Monday 7- 12 G	Learning Objective: Know that the molar mass of a substance is the mass per mole of the substance in g mol ⁻¹ Know what is meant by the terms 'empirical formula' and 'molecular formula'	Teacher uses power point presentation and videos to explain the concept of concentration in various units.
03.02.21 Wednesday 7- 12D Mode of Teaching – ZOOM	Learning Outcome: students will be able to: Define: relative atomic mass, molar mass Predict the use of parts per million in finding out carbon dioxide emissions in parts per million Predict the formula of the compound/molecule and gives the ratio in which the atoms are present. Work few examples of calculating empirical formulae and further to calculate molecular formulae Use of same calculation to calculate number of moles of water of crystallisation attached. Identifies the trend as we go down a group based on polarization of cations.	Teacher uses worksheet that contains interactive questions, to explain the term ppm.

	Learning Objective: of calculating empirical formulae	Teacher uses questions from
03.02.21	and further to calculate molecular formulae.	various past papers.
Wednesday		
8- 12D	Use the equation PV =nRT to calculate for gases and	Teacher uses worksheet that
1-12G	volatile liquids.	contains interactive
		questions, to explain
Mode of		quantitative chemistry.
Teaching -	Learning Outcome: students will be able to:	
	Be able to use experimental data to calculate	
ZOOM	i) empirical formulae	
	ii) molecular formulae including the use of $PV = nRT$ for gases and volatile liquids	
	Calculations of empirical formula may involve composition by mass or percentage composition by mass data.	

HOMEWORK: Solve exam style questions from text book.

YEAR 13 A /B -CHEMISTRY (TERM II)

WEEK 23 (31st January to 4th February)

Topic: further organic chemistry.

Carboxylic acids and their chemical properties.

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point presentations.

Date	Topic	
	Lesson Objective:	
31.01.21	Identify the acyl chloride and their reaction.	Teacher uses power
Sunday	Comparison of reactivity of acyl chloride with carboxylic	point presentation
1-13A	acids.	that contains
4-13B		interactive questions.
	Success Criteria: students will be able to:	
Mode of	Predict the general formula for simple acyl chlorides,	
Teaching -	structural formula of simple carboxylic derivatives with	Students solve the
	up to six carbons in the main chain	worksheet file
ZOOM	Use IUPAC rules to name simple carboxylic acids	questions.
	derivatives with up to three /six carbon atoms in the main	
	chain.	

Sunday	Lesson Objective:	Teacher uses power
31.01.21	understand the reactions of carboxylic acids with:	point presentation
2-13 A		that contains
	i phosphorus(V) chloride (phosphorus pentachloride)	interactive questions.
02.02.21		
Tuesday	ii alcohols in the presence of an acid catalyst	
2 12D		Cturdomto colum the
2-13B	Success Criteria: students will be able to:	Students solve the worksheet file
Mode of	Write balanced chemical reactions with appropriate	questions.
Teaching –	conditions, various methods of preparation of acyl	questions.
ZOOM	chlorides from carboxylic acids.	
20011	emorides from eurooxytic delds.	
	Identify physical properties of acid chlorides.	
Wednesday	Lesson Objective:	Teacher uses power
03.02.21	understand the reactions of acyl chlorides with:	point presentation
4- 13A		that contains
2-13B	i water	interactive questions
M . 1 C	ii alcohols	that helps to predict
Mode of	11 alconois	the products of reactions.
Teaching – ZOOM	iii concentrated ammonia	reactions.
ZOOM	in concentrated animonia	
	iv amines	
	Success Criteria: students will be able to:	
	Write equations and observations for the reaction of acyl	
	chlorides eg CH ₃ COCl	
	-with water to form acids, CH ₃ COOH & HCl	
		Students solve the
	- with CH ₃ OH to form ester, CH ₃ COOCH ₃ & HCl	worksheet file
	-with NH ₃ to form amide, CH ₃ CONH ₂ & HCl	questions .
	-with CH ₃ NH ₂ to form amide CH ₃ CONHCH ₃ & HCl	
		1

<u>Homework:</u> Solve worksheet file questions and text book.

YEAR 13 A/B- CHEMISTRY

WEEK 23 (31st January to 4th February)

Work Sent to the students through Zoom Learning Platform / Google classroom Topic:— Lattice Energy and Born Haber Cycle

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
31.01.21 Sunday	Learning Objective: Define lattice energy.	Teacher uses textbook questions and power point to
4 13A	Define the terms- enthalpy of atomization and electron affinity. Draw Born – Haber cycle	introduce the concept of Born Haber cycle.
5 13B	Learning Outcome:	
Mode of Teaching – ZOOM	Understand that lattice energy provides a measure of the measure of the strength of ionic bonding.	
	Understand that Born Haber cycle is the application of Hess's Law.	
31 .01.21 Sunday 8 13B	Learning Objective: Understand the difference between standard enthalpy change of atomization and enthalpy change of atomization.	Teacher uses PowerPoint presentation and video to demonstrate the factors affecting lattice energy.
3.02.21 Wednesday 5 13A	Construct Born Haber cycle of sodium chloride and magnesium chloride Learning Outcome: Explain the standard conditions.	Teacher uses worksheet that contains interactive questions, to explain the different steps of Born Haber cycle.
Mode of Teaching – ZOOM	Explain all the stages in the Born Haber cycle of sodium chloride and magnesium chloride.	
2.02.21 Tuesday 1 13B	Learning Objective: Calculation of lattice energy of - Sodium chloride, magnesium chloride calcium oxide, aluminium oxide, lithium oxide.	Instructions will be given to complete textbook questions. Teacher uses past paper
3.02.21 Wednesday	Learning Outcome: Label all the stages in the	questions to assess the concept of whether a reaction is
6 13A	Born Haber cycle of Sodium chloride, magnesium chloride calcium oxide, aluminium	possible.
Mode of Teaching – ZOOM	oxide, lithium oxide . Solve problems related to lattice energy	

HOMEWORK: Solve textbook question page 53