YEAR 9 A - F - CHEMISTRY

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Group email/ Google classroom

Topic: – SC5c – Properties of Ionic Compounds

Resources: Text book, Worksheet, Boardworks, GCSE science free lesson video, powerpoint.

Date	Lesson	Торіс	Mode of Teaching	
21 st Feb Sunday (girls) 22 nd Feb Monday (boys)	7	Learning Objective: Explain the properties of ionic compounds limited to: high melting points and boiling points, in terms of forces between ions Success Criteria: Describe the properties of ionic compounds. Explain why ionic compounds have high melting points and high boiling points.	Zoom	PPT/Video on Properties of Ionic Compounds
22 nd Feb Monday (girls) 22 nd Feb Monday– (boys)	8	Learning Objective: Explain the properties of ionic compounds limited to: whether or not they conduct electricity as solids, when molten and in aqueous solution Success Criteria: Explain why ionic compounds conduct electricity when they are molten and in aqueous solution Explain why ionic compounds do not conduct electricity as solids.	Zoom	PPT / Video on Properties of Ionic Compounds
22 nd Feb Monday (girls) 24 th Feb Wednesday – (boys)	1	 Learning Objective: Identify ionic compounds from the given substances Success Criteria: Identify ionic compounds from data about their properties. Identify ionic compounds from their melting and boiling points Identify ionic compounds from their conductivity of electricity. 	GC	Worksheet SC5c

Homework : Complete question E1 on page 39 of your textbook in your notebook

YEAR 10 A/D/E-CHEMISTRY (girls)

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Google classroom

Topic: Electrolytic refining and electroplating. **Resources:** Text book, Worksheet, power point.

	Lesson	Topic	Mode of	
			Teaching	
21/2/2021 Sunday	3	Learning Objective: To reinforce electrolytic refining: Explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper Learning Outcome: • How is copper purified using electrolysis? • Analyze the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper.	Zoom	Teacher uses power point presentation to explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes
24/2/2021 Wednesday	3	Learning Objective: Explain how electroplating can be used to improve the appearance and/or the resistance to corrosion of metal objects. Learning Outcome: Recall what electroplating is. Recall some common examples of electroplating. Explain why metal objects may be electroplated.	Zoom	Teacher uses power point presentation to explain how electroplating c be used to improve the appearance and/or the resistance to corrosio of metal objects.
25/2/2021 Thursday	2	Learning Objective: Explain how electroplating is carried out. Learning Outcome: • Explain the changes that occur at the electrodes •Write half equations for the reactions at the anode and cathode •Explain whether the reaction at each electrode is oxidation or reduction	Zoom	Teacher uses power point presentation that contains interactive questions on electroplating.
	3	Learning Objective: To answer the questions, on electrolytic refining and electro plating, in the worksheet. Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by answering the questions in the worksheet.	GC	Instruction will be given in the Google classroom to complete the Worksheet.

Home work: Solve S1and E1 question: SC13c(Pg101)

YEAR 10 B/C/F-CHEMISTRY (Boys)

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Google classroom

Topic: Electrolytic refining and electroplating. **Resources:** Text book, Worksheet, power point.

Date	Lesson	Topic	Mode of Teaching	
21/2/2021 Sunday	0	Learning Objective: Reinforcement of electrolytic refining: Explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper Learning Outcome: • How is copper purified using electrolysis? • Analyse the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper.	Google Meet	Teacher uses powerpoint presentation to explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes
22/2/2021 Monday	1&2	Learning Objective: 1. Explain how electroplating can be used to improve the appearance and/or the resistance to corrosion of metal objects. 2. Explain how electroplating is carried out. Learning Outcome: • Recall what electroplating is. • Recall some common examples of electroplating. • Explain why metal objects may be electroplated. • Explain the changes that occur at the electrodes • Write half equations for the reactions at the anode and cathode • Explain whether the reaction at each electrode is oxidation or reduction	Google Meet	Teacher uses powerpoint presentation to explain how electroplating cabe used to improte the appearance and/or the resistance to corrosion of me objects.
24/2/2021 Wednesday	4	Learning Objective: To answer the questions, on electrolytic refining and electro plating, in the worksheet. Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by answering the questions in the worksheet		Instruction will be given in the Google classroom to complete the Worksheet.

Home work: Solve S1and E1 question :SC13c(Pg101)

YEAR 11 A/D/E – CHEMISTRY (Girls)

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic:- SC24a: Addition Polymerisation SC24b: Polymer properties and uses

Resources: Text book, Worksheet, Boardworks powerpoint

Date	Topic	
21.02.21	Learning Objective: To answer the questions, on Alcohols and	Worksheet
Sunday	Carboxylic acids, in the worksheet.	assigned
8 th period	Learning outcome: Students will be able to reinforce the concepts	through GC.
Mode of	learned in the previous lesson by answering the questions in the	
Teaching:	worksheet.	
GC		
	Learning Objective:	Teacher uses
22.02.21	Recall that a polymer is a substance of high average relative molecular	powerpoint
Monday	mass made up of small repeating units.	presentation
4 th period	Describe:	with
	a how ethene molecules can combine together in a polymerisation	interactive
Mode of	reaction	questions
Teaching:	b that the addition polymer formed is called poly(ethene)	
Zoom	(conditions and mechanisms not required)	
	Learning Outcome:	
	Describe how monomers, for example ethene or chloroethene (vinyl	
	chloride), can join together to make very long chain molecules called	
	polymers and the process is known as addition polymerization.	
	Apply the basic knowledge of polymerization of ethene and	
	chloroethene to construct some equations formation of poly(propene),	
	poly(chloroethene) (PVC) and PTFE.	
24.02.21	Learning Objective:	Teacher uses
Wednesday	Deduce the structure of a monomer from the structure of an addition	powerpoint
8 th period	polymer and vice versa	presentation
	Explain how the uses of polymers are related to their properties and vice	with
Mode of	versa: including poly(ethene), poly(propene),	interactive
Teaching:	poly(chloroethene) (PVC) and poly(tetrafluoroethene) (PTFE)	questions
Zoom	Learning Outcome:	
	Identify monomer and polymers from cited examples	
	Correlate use and properties of polymers	
	Realise that polymers are often hard to dispose of, and that	
	Biodegradable ones offer some solutions to these problems.	
25.02.21	Learning Objective:	Teacher shows
Thursday	Core Practical 8: To investigate the temperature rise produced in a	a video and
5 th and 6 th	known mass of water by the combustion of the alcohols	asks students
Period	ethanol,propanol,butanol and pentanol.	to note the
	Learning Outcome:	observations
Mode of	Compare the heat energy produced by the four alcohols.	and draw
Teaching:	Draw conclusions about the trend in the properties of alcohols	conclusions
Zoom	V. Camalata the tenth of Ocat CO24 and Hittin Dalamania tion CC24.	

HOMEWORK: Complete the textbook Qs of SC24a: Addition Polymerisation; SC24b: Polymer properties and uses

YEAR 11 B/C/F – CHEMISTRY (Boys)

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic:- SC24a: Addition Polymerisation SC24b: Polymer properties and uses

Resources: Text book, Worksheet, Boardworks powerpoint

	Tenie	
Date	Topic	m 1
21.02.21	Learning Objective:	Teacher
Sunday	Core Practical 8: To investigate the temperature rise produced in a known	shows a
1 st and 2 nd	mass of water by the combustion of the alcohols ethanol,propanol,butanol	video and
Period	and pentanol.	asks students
	Learning Outcome:	to note the
Mode of	Compare the heat energy produced by the four alcohols.	observations
Teaching:	Draw conclusions about the trend in the properties of alcohols	and draw
Zoom		conclusions
	Learning Objective:	Teacher uses
22.02.21	Recall that a polymer is a substance of high average relative molecular	powerpoint
Monday	mass made up of small repeating units.	presentation
3 rd Period	Describe:	with
	a how ethene molecules can combine together in a polymerisation	interactive
Mode of	reaction	questions
Teaching:	b that the addition polymer formed is called poly(ethene)	
Zoom	(conditions and mechanisms not required)	
	Learning Outcome:	
	Describe how monomers, for example ethene or chloroethene (vinyl	
	chloride), can join together to make very long chain molecules called	
	polymers and the process is known as addition polymerization.	
	Apply the basic knowledge of polymerization of ethene and chloroethene	
	to construct some equations formation of poly(propene),	
	poly(chloroethene) (PVC) and PTFE.	
23.02.21	Learning Objective:	Teacher uses
Tuesday	Deduce the structure of a monomer from the structure of an addition	powerpoint
7 th Period	polymer and vice versa	presentation
	Explain how the uses of polymers are related to their properties and vice	with
Mode of	versa: including poly(ethene), poly(propene),	interactive
Teaching:	poly(chloroethene) (PVC) and poly(tetrafluoroethene) (PTFE)	questions
Zoom	Learning Outcome:	
	Identify monomer anf polymers from cited examples	
	Correlate use and properties of polymers	
	Realise that polymers are often hard to dispose of, and that	
	Biodegradable ones offer some solutions to these problems.	
25.02.21	Learning Objective: To answer the questions, on Addition	Worksheet
Thursday	polymerization and polymer properties and uses, in the worksheet.	assigned
4 th Period	Learning outcome: Students will be able to reinforce the concepts	through GC.
Mode of	learned in the previous lesson by answering the questions in the	
Teaching:	worksheet.	
GC		
		1

HOMEWORK: Complete the textbook Qs of SC24a: Addition Polymerisation; SC24b: Polymer properties and uses.

YEAR 11 G/H-CHEMISTRY (IGCSE)

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Esters & Synthetic polymers

Resources: Text book, Worksheet, IGCSE science free lesson video, power point.

Date	Topic	
21.02.2021	Lesson Objective:	Teacher uses
Sunday	Know that ethyl ethanoate is the ester produced when ethanol	power point
6 th period	and ethanoic acid react in the presence of an acid catalyst	presentation
	Understand how to write the structural and displayed formulae	with
Mode of	of ethyl ethanoate	interactive
Teaching:	Learning Outcome:	questions.
Zoom/	Write equations to show how esters are formed.	
Google Meet	Write structural and displayed formulae of esters	
22.02.2021	Lesson Objective:	Teacher uses
Monday	Understand how to write the structural and displayed formulae	power point
5 th period	of an ester, given the name or formula of the alcohol and	presentation
Mode of	carboxylic acid from which it is formed and vice versa	with
Teaching:	Know that esters are volatile compounds with distinctive smells	interactive
Zoom/	and are used as food flavourings and in perfumes	questions
Google Meet	Learning Outcome:	
	Predict the name of esters given the alcohol and carboxylic	
	acid.	
	List physical properties of esters and state their uses.	
23.02.2021	Lesson Objective:	Teacher uses
	Know that an addition polymer is formed by joining up many	power point
Tuesday	small molecules called monomers	presentation
1 st period	Uunderstand how to draw the repeat unit of an addition	with
&	polymer, including poly(ethene), poly(propene),	interactive
2 nd period	poly(chloroethene) and (poly)tetrafluoroethene	questions
	Learning Outcome:	
Mode of	Describe how monomers, for example ethene or chloroethene	
Teaching:	(vinyl chloride), can join together to make very long chain	
Zoom/	molecules called polymers and the process is known as addition	
Google Meet	polymerization.	
	Write few equations for the polymerization of ethene and	
	chloroethene (vinyl chloride)	
	Lesson Objective:	Teacher uses
	Understand how to deduce the structure of a monomer from the	power point
	repeat unit of an addition polymer and vice versa	presentation
	Learning Outcome:	with

	Apply the basic knowledge of polymerization of ethene and	interactive
	chloroethene to construct some equations formation of	questions
	poly(propene), poly(chloroethene) (PVC)	
25.02.2021	Learning Objective: To answer the questions on Esters and	Worksheet
Thursday	Addition polymers, in the worksheet.	assigned
4 th period	Learning outcome: Students will be able to reinforce the	through GC.
Mode of	concepts learned in the previous lesson by answering the	
Teaching:	questions in the worksheet.	
GC		

YEAR 12 G /D – CHEMISTRY

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Reaction kinetics

Resources: Text book, Worksheet file, video, power point presentations.

Topic	Mode of	
Learning Objective: To reinforce Maxwell-Boltzmann distribution curve: Explain how changes in temperature can affect the rate of a reaction, in terms of a qualitative understanding of the Maxwell-Boltzmann model of the distribution of molecular energies	Zoom	Teacher uses power point presentation to explain Maxwell-
Learning outcome: • Draw Maxwell – Boltzmann distribution curves. • Effect of increasing temperature on the rate of exothermic and endothermic reactions •		Boltzmann model of the distribution of molecular energies
Learning Objective:		Teacher uses
1. Understand the role of catalyst in providing alternative	Zoom	power point
		presentation to
rate of a reaction, in terms of qualitative understanding of Maxwell-Boltzmann model of the distribution of molecular energies. Learning outcome:		explain how the addition of a catalyst can affect the rate of a reaction.
 Draw the reaction profiles of both an uncatalysed and a catalysed reaction. Understand the economic benefits of the use of 		
catalyst in industrial reactions. •Understand the use of a solid catalyst for industrial reactions involving gases, in terms of providing a surface for the reaction.		
	Learning Objective: To reinforce Maxwell-Boltzmann distribution curve: Explain how changes in temperature can affect the rate of a reaction, in terms of a qualitative understanding of the Maxwell-Boltzmann model of the distribution of molecular energies. Learning outcome: • Draw Maxwell – Boltzmann distribution curves. • Effect of increasing temperature on the rate of exothermic and endothermic reactions • Learning Objective: 1. Understand the role of catalyst in providing alternative reaction routes of lower activation energy. 2. Explain how the addition of a catalyst can affect the rate of a reaction, in terms of qualitative understanding of Maxwell-Boltzmann model of the distribution of molecular energies. Learning outcome: • Draw the reaction profiles of both an uncatalysed and a catalysed reaction. • Understand the economic benefits of the use of catalyst in industrial reactions. • Understand the use of a solid catalyst for industrial reactions involving gases, in terms of providing a	Learning Objective: To reinforce Maxwell-Boltzmann distribution curve: Explain how changes in temperature can affect the rate of a reaction, in terms of a qualitative understanding of the Maxwell-Boltzmann model of the distribution of molecular energies. Learning outcome: • Draw Maxwell – Boltzmann distribution curves. • Effect of increasing temperature on the rate of exothermic and endothermic reactions • Learning Objective: 1. Understand the role of catalyst in providing alternative reaction routes of lower activation energy. 2. Explain how the addition of a catalyst can affect the rate of a reaction, in terms of qualitative understanding of Maxwell-Boltzmann model of the distribution of molecular energies. Learning outcome: • Draw the reaction profiles of both an uncatalysed and a catalysed reaction. • Understand the economic benefits of the use of catalyst in industrial reactions. • Understand the use of a solid catalyst for industrial reactions involving gases, in terms of providing a

24.2.2021	Learning Objective:		
Wednesday 2 12G 25.2.2021 Thursday 7 12D	To reinforce the concepts such as reaction rate, collision theory, activation energy, Factors affecting reaction rate, Maxwell-Boltzmann distribution curve and effect of catalysts. Learning outcome: Students will be able to recall and apply the concepts learned by solving exam style questions.	Zoom	Teacher uses PowerPoint presentation to reinforce the concepts.

HOMEWORK: Solve textbook questions (pg 262)

YEAR 12 D/G- CHEMISTRY

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic 4 – CALCULATIONS

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
23.02.21	Learning Objective:	Teacher uses power
Tuesday	Atom economy.	point to show rules
8 12D	·	to recap basics of
	Learning Outcome: students will be able to:	organic linking to
22.02.21	Define atom economy.	GCSE level.
Monday	Explain the need of high atom economy.	
6 12G	Calculate atom economy for various reaction.	Lesson will be
	Select correct pathway to for manufacture of chemicals at	developed with
Mode of	industrial level with respect to high atom economy.	many examples.
Teaching –		
Zoom		
22.02.21	Learning Objective:	Teacher uses power
Monday		point presentation
7- 12G	Percentage yield from experimental data and revision of	and videos to
	atom economy.	explain the concept
	•	of concentration in
	Learning Outcome: students will be able to:	various units.
24.02.21		
Wednesday	Be able to calculate percentage yields and percentage atom	
7- 12D	economies using chemical equations and experimental	
Mode of	results	Teacher uses
Teaching –	molar mass of the desired product	worksheet that
ZOOM	Atom economy of a reaction	contains interactive
	$= \times 100\%$ sum of the molar masses of all products	questions, to
		calculate % yield.

	Learning Objective: empirical formula by combustion	Teacher uses
24.02.21	analysis	questions from
Wednesday	Apply to large-scale industrial production – economic	various past papers.
8- 12D	viability of process depends on cost and percentage yield	
1-12G	of product.	Teacher uses
Mode of		worksheet that
Teaching -	Learning Outcome: students will be able to:	contains interactive
zoom	Be able to use experimental data to calculate	questions, to explain
	i) empirical formulae from combustion analysis	quantitative
	, 1	chemistry.
	ii) molecular formulae including the use of $pV = nRT$ for	
	gases and volatile liquids	
	iii) calculate mole ratio and apply to synthesis the empirical	
	formula.	
	Calculations of empirical formula may involve composition	
	by mass or percentage composition by mass data.	

HOMEWORK: Solve exam style questions from text book.

YEAR 13 A /B -CHEMISTRY

WEEK 26 (21st Feb to 25th Feb)

Topic: further organic chemistry.

Topic 18B: Amines, amides, amino acids and proteins

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point presentations.

Date	Topic	
	Lesson Objective:	
21.02.2021	Writing of systemic names of amine and amide.	Teacher uses
Sunday	Synthesis of amides by various routes.	power point
1-13A	•	presentation that
4-13B	Success Criteria: students will be able to:	contains
		interactive
Mode of	Predict the missing compounds in the given routes.	questions.
Teaching	Identify condition and type of reaction at each stage.	
_	Complete the reaction.	
Zoom	select and justify suitable practical procedures for carrying out	Students solve the
	reactions involving compounds with functional groups included	worksheet file
	in the specification, including identifying appropriate control	questions.
	measures to reduce risk, based on data about hazards	

	Lesson Objective:	
Sunday	Condensation polymers.	
21.02.2021	Success Criteria: students will be able to:	Teacher uses
2-13 A	draw the structural formulae of the repeat units of condensation	power point
2-13 A	<u> </u>	
23.02.2021	polymers formed by reactions between:	presentation that contains
	i disambawalia asida and disla	interactive
Tuesday	i dicarboxylic acids and diols	
2 12D		questions.
2-13B	ii dicarboxylic acids and diamines	
3.6		
Mode of	iii amino acids	
Teaching		Students solve the
	Understand the formation, structure	worksheet file
Zoom	and uses of the polyamides, nylon, Kevlar.	questions.
	Understand the formation, structure and uses of the polyester,	
	polyethylene terephthalate	

Wednesday	Lesson Objective:	Teacher uses
24.02.21	Zwitterions and its properties.	power point
4- 13A	Success Criteria: students will be able to:	presentation that
2-13B	understand the properties of 2-amino acids, including:	contains
Mode of		interactive
Teaching	i acidity and basicity	questions that
_	in solution, as a result of the formation of zwitterions	helps to predict
Zoom		the acid/basic
	ii effect of aqueous solutions on plane-polarised monochromatic	nature and optical
	light	activity of amino
		acids.
		Students solve the
		worksheet file
		questions.

Homework : Solve worksheet file questions and text book.

YEAR 13 A/B- CHEMISTRY

WEEK 26 (21st Feb to 25th Feb)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Introduction to entropy and entropy calculations

Resources: Text book, Worksheet, Video, Board works, power point.

Date	Topic	
21.02.21 Sunday 5 ,8 13B 24.02.21 Wednesday	 Learning Objective: Completion of core practical 13 Learning Outcome: Identify the steps in the correct logical sequence. Record the data in the observation table 	Teacher uses video and power point to discuss the experimental procedure for iodine clock reaction. Student uses worksheet to write observations and solve
5,613A Mode of Teaching – Zoom	 with proper units and precision. Draw the graph of rate against concentration. Deduce the order of a reaction with respect to each species involved in the reaction. 	questions given in the worksheet.
21.02.21 Sunday 3 1 3A	Learning Objective: Understand why entropy changes occur during changes of state.	Teacher uses PowerPoint presentation and video to introduce the concept of entropy.
23.02.21 Tuesday 1 13B	Define entropy. Solve problems related to entropy changes.	Student uses past paper and worksheet to reinforce the concept of entropy calculations.
Mode of Teaching – Zoom	Learning Outcome: Explain that some endothermic reactions can occur without the input of heat.	
	Suggest the reason for the factors other than enthalpy which controls the feasibility of a reaction.	
	Suggest the meaning of the term spontaneous reaction.	
	Write the total entropy change in a reaction is equal to entropy change of the system and entropy change of the surroundings.	

HOMEWORK: Solve textbook question page 63 – Question 1