YEAR 9 A - F - CHEMISTRY

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Group email/ Google classroom

Topic:– SC6a– Covalent Bonds

Resources: Text book, Worksheet, Boardworks, GCSE science free lesson video, powerpoint.

Date	Lesson	Торіс	Mode of Teaching	
28 th Feb Sunday (girls) 1 st March Monday (boys)	7	Learning Objective: Explain how a covalent bond is formed when a pair of electrons is shared between two atoms Success Criteria: Define covalent bond Differentiate between ionic and covalent bond	Zoom	PPT / Video on Covalent Bonds
1 st March Monday (girls) 1 st March Monday– (boys)	8	Learning Objective: Recall that covalent bonding results in the formation of molecules Success Criteria: • Explain covalent bond is formed between non metal atoms • Predict some examples of covalent molecules.	Zoom	PPT / Video on Covalent Bonds
1 st March Monday (girls) 3 rd March Wednesday – (boys)	1	Learning Objective: Explain the formation of simple molecular, covalent substances, using dot and cross diagrams, including a. hydrogen b. hydrogen chloride c. water d. methane e. oxygen f. carbon dioxide Success Criteria: • Describe the sharing of electrons takes place between the atoms involved in covalent bond. • Draw dot and cross diagram of some covalent molecule	GC	Worksheet SC6a

YEAR 10 A/D/E-CHEMISTRY (girls)

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Google classroom

Topic: Reactivity

Resources: Text book, Worksheet, power point.

	Lesson	Topic	Mode of	
			Teaching	
28/2/2021 Sunday	3	Learning Objective: Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions. Learning Outcome: • What are the similarities and differences in the way different metals react with water, acids and salt solutions? • What happens to metal atoms when they react with water and acids?	Zoom	Teacher uses powerpoint presentation to explain the reactions of some metals with water, acids and salt solutions.
3/3/2021 Wednesday	3	 Learning Objective: Explain displacement reactions as redox reactions, in terms of gain or loss of electrons. Learning Outcome: What is meant by displacement reactions? Describe the reactions of metals with salt solutions. Explain why displacement reactions are redox reactions. 	Zoom	Teacher uses powerpoint presentation to expl displacement reaction in terms of gain or lof electrons.
4/3/2021 Thursday	3	Learning Objective: Explain the reactivity series of metals (potassium, sodium, calcium, magnesium, aluminium, (carbon), zinc, iron, (hydrogen), copper, silver, gold) in terms of the reactivity of the metals with water and dilute acids and that these reactions show the relative tendency of metal atoms to form cations. Learning Outcome: Deduce the order of metals in the reactivity series from their reactions with water, acids and salt solutions. Explain the reactivity series in terms of the tendency of different metal atoms to form cations.	Zoom	Teacher uses powerpoint presentation that contains interactive questions on reactivity.
		Learning Objective: To answer the questions, on reactivity, in the worksheet Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by answering the questions in the worksheet.	GC	Instruction will be given in the Google classroom to complete the Worksheet.

Home work: Solve S1and E1 question :SC11a(Pg87)

YEAR 10 B/C/F-CHEMISTRY (Boys)

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Google classroom

Topic: Reactivity

Resources: Text book, Worksheet, power point.

Date	Lesson	Topic	Mode of Teaching	
28/2/2021 Sunday	0	Learning Objective: Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions. Learning Outcome: • What are the similarities and differences in the way different metals react with water, acids and salt solutions? • What happens to metal atoms when they react with water and acids?	Google Meet	Teacher uses powerpoint presentation to explain the reactions of some metals with water, acids and salt solutions.
1/3/2021 Monday	1&2	 Learning Objective: Explain displacement reactions as redox reactions, in terms of gain or loss of electrons. Explain the reactivity series of metals (potassium, sodium, calcium, magnesium, aluminium, (carbon), zinc, iron, (hydrogen), copper, silver, gold) in terms of the reactivity of the metals with water and dilute acids and that these reactions show the relative tendency of metal atoms to form cations. Learning Outcome:	Google Meet	Teacher uses powerpoint presentation to explain displacement reactions in terms of gain or loss of electrons.
3/3/2021 Wednesday	4	Learning Objective: To answer the questions, on reactivity, in the worksheet. Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by answering the questions in the worksheet		Instruction wil be given in the Google classroom to complete the Worksheet.

Home work: Solve S1and E1 question :SC11a(Pg87)

YEAR 11 A/D/E – CHEMISTRY (Girls)

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: SC24c: Condensation Polymerisation SC24d: Problems with polymers

Resources: Text book, Worksheet, Boardworks powerpoint

Date	Topic	
28.02.21	Learning Objective:	Teacher
Sunday	Explain: a) why polyesters are condensation polymers	uses
8 th period	b) how a polyester is formed when a monomer molecule containing two	powerpoint
1	carboxylic acid groups is reacted with a monomer molecule containing two	presentation
Mode of	alcohol groups c) how a molecule of water is formed each time an ester	with
Teaching:	link is formed	interactive
GC	Learning outcome:	questions
	Differentiate between addition and condensation polymers.	1
	Learning Objective:	Teacher
01.03.21	Explain: polyesters formation.	uses
Monday	Learning outcome:	powerpoint
4 th period	Write chemical equations for the formation of condensation polymers.	presentation
	Understand why polyesters are condensation polymers	with
Mode of	Explain how a polyester is formed when a monomer molecule containing	interactive
Teaching:	two carboxylic acid groups is reacted with a monomer molecule containing	questions
Zoom	two alcohol groups	
	Suggest how a molecule of water is formed each time an ester	
	link is formed	
03.03.21	Learning Objective:	Teacher
Wednesday	Describe some problems associated with polymers including the:	uses
8 th period	a availability of starting materials	powerpoint
	b persistence in landfill sites, due to non-biodegradability	presentation
Mode of	c gases produced during disposal by combustion	with
Teaching:	d requirement to sort polymers so that they can be melted and reformed into	interactive
Zoom	a new product	questions
	Learning outcome:	
	Understand that addition polymers are non-biodegradable and evaluate the	
	advantages and disadvantages of their disposal by landfill and incineration.	
04.03.21	Learning Objective:	Teacher
Thursday	Evaluate the advantages and disadvantages of recycling polymers, including	uses
6 th Period	economic implications, availability of starting materials and environmental	powerpoint
	impact	presentation
Mode of	Learning outcome:	with
Teaching:	Discuss few advantages and disadvantages of recycling plastics.	interactive
Zoom	Understands the need of developing biodegradable polymers.	questions
04.03.21	Learning Objective: To answer the questions, on Condensation	Worksheet
Thursday	Polymerisation and Problem with polymers, in the worksheet.	assigned
6 th Period	Learning outcome: Students will be able to reinforce the concepts learned	through GC.
GC	in the previous lesson by answering the questions in the worksheet.	

HOMEWORK: Complete the textbook Qs of SC24c: Condensation Polymerisation

SC24d: Problems with polymers

YEAR 11 B/C/F - CHEMISTRY (Boys)

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: SC24c: Condensation Polymerisation

SC24d: Problems with polymers

Resources: Text book, Worksheet, Boardworks powerpoint

	ces: Text book, Worksheet, Boardworks powerpoint	1
Date	Topic	
28.02.21	Learning Objective:	Teacher
Sunday	Explain:	shows a
1 st Period	a why polyesters are condensation polymers	video and
	b how a polyester is formed when a monomer molecule containing two	asks students
Mode of	carboxylic acid groups is reacted with a monomer molecule containing	to note the
Teaching:	two alcohol groups	observations
Zoom	c how a molecule of water is formed each time an ester	and draw
	link is formed	conclusions
	Learning outcome:	
	Differentiate between addition and condensation polymers.	
28.02.21	Learning Objective:	Teacher
Sunday	Explain the reaction ofpolyesters formation.	shows a
2 nd Period	Learning outcome:	video and
	Write chemical equations for the formation of condensation polymers.	asks students
Mode of	Understand why polyesters are condensation polymers	to note the
Teaching:	Explain how a polyester is formed when a monomer molecule containing	observations
Zoom	two carboxylic acid groups is reacted with a monomer molecule	and draw
	containing two alcohol groups	conclusions
	Suggest how a molecule of water is formed each time an ester	
	link is formed	
	Learning Objective:	Teacher uses
01.03.21	Describe some problems associated with polymers including the:	powerpoint
Monday	a availability of starting materials	presentation
3 rd Period	b persistence in landfill sites, due to non-biodegradability	with
	c gases produced during disposal by combustion	interactive
Mode of	d requirement to sort polymers so that they can be melted and reformed	questions
Teaching:	into a new product	
Zoom	Learning outcome:	
	Understand that addition polymers are non-biodegradable and evaluate	
	the advantages and disadvantages of their disposal by landfill and	
	incineration.	
02.03.21	Learning Objective:	Teacher uses
Tuesday	Evaluate the advantages and disadvantages of recycling polymers,	powerpoint
7 th Period	including economic implications, availability of starting materials and	presentation
	environmental impact	with
Mode of	Learning outcome:	interactive
Teaching:	Discuss few advantages and disadvantages of recycling plastics.	questions
Zoom	Understands the need of developing biodegradable polymers.	

04.03.21	Learning Objective: To answer the questions, on Condensation	Worksheet
Thursday	Polymerisation and Problem with polymers, in the worksheet.	assigned
4 th Period	Learning outcome: Students will be able to reinforce the concepts	through GC.
Mode of	learned in the previous lesson by answering the questions in the	_
Teaching:	worksheet.	
GC		

HOMEWORK: Complete the textbook Qs of SC24c: Condensation Polymerisation SC24d: Problems with polymers

YEAR 11 G/H-CHEMISTRY (IGCSE)

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Synthetic polymers

Resources: Text book, Worksheet, IGCSE science free lesson video, power point.

Date	Topic	
28.02.2021	Learning Objective:	Teacher uses
Sunday	Explain:	power point
6 th period	a why polyesters are condensation polymers	presentation
	b how a polyester is formed when a monomer molecule	with
Mode of	containing two carboxylic acid groups is reacted with a	interactive
Teaching:	monomer molecule containing two alcohol groups	questions.
Zoom/	c how a molecule of water is formed each time an ester	
Google Meet	link is formed	
	Learning outcome:	
	Differentiate between addition and condensation polymers.	
01.03.2021	Learning Objective:	Teacher uses
Monday	Explain:	power point
5 th period	a why polyesters are condensation polymers	presentation
Mode of	b how a polyester is formed when a monomer molecule	with
Teaching:	containing two carboxylic acid groups is reacted with a	interactive
Zoom/	monomer molecule containing two alcohol groups	questions
Google Meet	c how a molecule of water is formed each time an ester	
	link is formed	
	Learning outcome:	
	Write chemical equations for the formation of condensation	
	polymers.	

02.03.2021	Learning Objective:	Teacher uses
	Describe some problems associated with polymers including	power point
Tuesday	the:	presentation
1 st period	a availability of starting materials	with
&	b persistence in landfill sites, due to non-biodegradability	interactive
2 nd period	c gases produced during disposal by combustion	questions to
	d requirement to sort polymers so that they can be melted and	teach the
Mode of	reformed into a new product	problems of
Teaching:	Learning outcome:	polymers.
Zoom/	Understand that addition polymers are non-biodegradable and	
Google Meet	evaluate the advantages and disadvantages of their disposal by	
	landfill and incineration.	
	Learning Objective:	Teacher uses
	Evaluate the advantages and disadvantages of recycling	power point
	polymers, including economic implications, availability of	presentation to
	starting materials and environmental impact	understand the
	Learning outcome:	advantages and
	Discuss few advantages and disadvantages of recycling	disadvantages
	plastics.	of disposal
	Understands the need of developing biodegradable polymers.	methods.
04.03.2021	Learning Objective: To answer the questions on Condensation	Worksheet
Thursday	polymers, in the worksheet.	assigned
4 th period	Learning outcome: Students will be able to reinforce the	through GC.
Mode of	concepts learned in the previous lesson by answering the	
Teaching:	questions in the worksheet.	
GC		

YEAR 12 D/G- CHEMISTRY

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic 4 – CALCULATIONS

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
02.03.21	Learning Objective:	Teacher uses
Tuesday	Atom economy at industrial level.	power point to
8 12D	•	show various
	Learning Outcome: students will be able to:	steps of
01.03.21	Comparison of atom economy for single step to multi step	calculations.
Monday	processes.	
6 12G		Lesson will be
	Explain the need of high atom economy at industrial level.	developed with
Mode of		many examples.
Teaching –	Select correct pathway to for manufacture of chemicals at	
Zoom	industrial level with respect to high atom economy.	
01.03.21	Learning Objective: empirical formula by combustion	Teacher uses
Monday	analysis	power point
7- 12G	Apply to large-scale industrial production – economic	presentation and
	viability of process depends on cost and percentage yield of	videos to explain
	product.	the concept of
		combustion
03.03.21	Learning Outcome: students will be able to:	analysis.
Wednesday	Be able to use experimental data to calculate	
7- 12D	i) empirical formulae from combustion analysis	
Mode of		
Teaching –	ii) molecular formulae including the use of $pV = nRT$ for gases	Teacher uses
ZOOM	and volatile liquids	worksheet that
		based on
	iii) calculate mole ratio and apply to synthesis the empirical	combustion
	formula.	analysis.
	Calculations of empirical formula may involve composition by	
	mass or percentage composition by mass data.	
	r	
	Learning Objective: applications of calculations to solve exam	Teacher uses
03.03.21	style questions	questions from
Wednesday	Learning Outcomes students will be able to:	various past
8- 12D	Learning Outcome: students will be able to:	papers and
1-12G	Apply the cumulative concept of calculations,	worksheet- exam
Mode of	Select the correct steps to solve the given problems and suggest	style questions
Teaching –	improvents in the lab procedure for various types of	from text book.
zoom	calculations.	

HOMEWORK: Solve exam style questions from text book.

YEAR 12 G /D – CHEMISTRY

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Organic chemistry

Resources: Text book, Worksheet file, video, power point presentations.

Date	Topic	Mode of Teaching	
1.3.2021 Monday 3 12D 2.3.2021 Tuesday 1 12G	Learning Objective: 1. To differentiate saturated and unsaturated hydrocarbons. 2. To represent organic molecules using displayed formulae, molecular formulae, skeletal formulae, empirical formula and structural formulae. Learning outcome: • What are hydrocarbons? • Give examples of saturated and unsaturated hydrocarbons • Give different types of formula for a given compound.	Zoom	Teacher uses powerpoint presentation on different types of formulae.
2.3.2021 Tuesday 2 12G 7 12D	Learning Objective: Demonstrate an understanding that there are series of organic compounds characterized by a general formula and one or more functional groups. Learning outcome: • What is meant by the terms homologous series and functional group. • Represent organic molecules using general formula. • Recall the general characteristics of homologous series.	Zoom	Teacher uses powerpoint presentation to explain functional groups and homologous series
3.3.2021 Wednesday 2 12G 4.3.2021 Thursday 7 12D	Learning Objective: To answer the questions, on organic chemistry, in the worksheet. Learning outcome: Students will be able to recall and apply the concepts learned by solving worksheet questions.	GC	Instruction will be given in the Google classroom to complete the Worksheet.

HOMEWORK: Solve textbook questions (pg171)

YEAR 13 A /B -CHEMISTRY

WEEK 27 (28th Feb to 4th March)

Topic: further organic chemistry.

Topic 19B: Nuclear magnetic resonance (NMR)

Work sent to the students through Google classroom / Zoom Learning Platform

Resources: Text book, Worksheets, video, power point presentations.

Date	Topic	
	Lesson Objective:	
28.02.2021	Nuclear magnetic resonance (NMR)	Teacher uses power
Sunday	Introduction and basic information.	point presentation
1-13A 4-13B	Success Criteria: students will be able to:	that contains interactive questions.
Mode of	State that NMR spectroscopy involves interaction of materials with the low-energy radiowave region of the	
Teaching – Zoom	electromagnetic spectrum. Understand that ¹³ C NMR spectroscopy provides information about the positions of ¹³ C atoms in a molecule. Describe the use of tetramethylsilane, TMS, as the standard for chemical shift measurements	Students solve the worksheet file questions.
Sunday 28.02.2021 2-13 A	Lesson Objective: Use the given chemical shift number of peaks in the compound due to the different environments.	Teacher uses power point presentation that contains interactive questions.
02.03.2021 Tuesday	Success Criteria: students will be able to: be able to use data from ¹³ C NMR spectroscopy to:	1
2-13B	i predict the different environments for carbon atoms present in a molecule, given values of chemical shift, δ	Students solve the worksheet file
Mode of Teaching – Zoom	ii justify the number of peaks present in a ¹³ C NMR spectrum because of carbon atoms in different environments	questions.
Wednesday 03.03.21 4- 13A 2-13B	Lesson Objective: Analyse a high resolution proton NMR spectrum of a simple molecule	Teacher uses power point presentation that contains interactive questions that helps to predict
Mode of Teaching – Zoom	Success Criteria: students will be able to: i predict the different types of proton present in a molecule, given values of chemical shift, δ ii relate relative peak areas, or ratio numbers of protons, to the relative numbers of ${}^{1}H$ atoms in different environments	the acid/basic nature and optical activity of amino acids. Students solve the worksheet file questions.

iii deduce the splitting patterns of adjacent, non-equivalent protons using the (n+1) rule and hence suggest the possible structures for a molecule	
iv predict the chemical shifts and splitting patterns of the 1H atoms in a given molecule	

<u>Homework:</u> Solve worksheet file questions and text book.

YEAR 13 A/B- CHEMISTRY

WEEK 27 (28th Feb to 4th March)

Work Sent to the students through Zoom Learning Platform / Google classroom

Topic: Gibbs Free Energy

Resources: Text book, Worksheet, Video, Board works, power point

Date	Topic	
28.02.21 Sunday 5 ,8 13B 3.03.21 Wednesday 5 , 6 13A Mode of Teaching – Zoom	 Learning Objective: Explain the entropy changes in different reactions. Learning Outcome: Understand why entropy changes to the system occur during the reactions in which there is a change of state. the reactions in which there is a change in number of moles from reactants and products. the dissolving of ionic solids in water. 	Teacher uses video and power point to discuss the entropy changes take place in different reactions. Student uses worksheet to write answers based on the topic.
28.02.21 Sunday 3 13A 02.03.21 Tuesday 1 13B Mode of Teaching – Zoom	 Learning Objective: Explain the concept of Gibbs energy. Learning Outcome: Understand that the balance between the entropy change and the enthalpy change determines the feasibility of a reaction and is represented by the equation Δ G = Δ H - T Δ S Use the equation to predict whether a reaction is thermodynamically feasible. Determine the temperature at which a reaction is thermodynamically feasible. 	Teacher uses PowerPoint presentation and video to discuss different problems based on Gibbs free energy equation. Student uses past paper to reinforce the concept of Gibbs Free energy Change.

HOMEWORK: Solve textbook question page 69 – Question 1, 2