YEAR 9 (A-F) – PHYSICS

WEEK 30 (21st March to 25th March)

Work Sent to the students through Google classroom

Topic: SP 5h – Using the short wavelengths & SP 5i – EM radiation dangers

Resources: Student text book, Worksheet, GCSE science free lesson video, power point.

Date	Lesson	Lesson objectives & Learning outcomes	Mode of Teaching	
21 st March Sunday (Girls) 21 st March Sunday (Boys)	8	Learning objective: Discuss the effects of differences in the velocities of electromagnetic waves in different substances. Describe some uses of electromagnetic radiation • Ultraviolet • X-rays • Gamma rays Learning Outcomes: Explain the effects of differences in the velocities of electromagnetic waves in different substances. Explain the uses of each type of radiation: (a)ultraviolet: including security marking, fluorescent lamps, detecting forged bank notes and disinfecting water (b) X-rays: including observing the internal structure of objects, airport security scanners and medical X-rays (c) gamma rays: including sterilising food and	Zoom	Teacher uses power point presentation that contains interactive questions
23 rd March Tuesday (Girls)	3	medical equipment, and the detection of cancer and its treatment. Learning objective: Discuss the potential danger associated with an electromagnetic wave increases with increasing		
25 th March Thursday (Boys)	5	Describe the harmful effects on people of excessive exposure to electromagnetic radiation. Learning Outcomes: Describe how the potential danger of electromagnetic radiation depends on its frequency. Explain the harmful effects on people of excessive	Zoom	Teacher uses power point presentation that

		exposure to electromagnetic radiation, including: (a) microwaves: internal heating of body cells (b) infrared: skin burns (c) ultraviolet: damage to surface cells and eyes, leading to skin cancer and eye conditions (d) X-rays and gamma rays: mutation or damage to cells in the body.		contains interactive questions.
23 rd March Tuesday (Girls) 25 th March Thursday (Boys)	6	Learning Objective: Complete the worksheet posted in GC Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by completing the worksheet.	GC	Instruction will be given in GC to complete the worksheet.

YEAR 10 A-F - PHYSICS

WEEK 30 (21st March to 25th March)

Topic: Work and Power/ Particle Model

Lesson Objective: SP8a Work and Power

SP14 Particle Model

Resources: Student text book, worksheet file, interactive power point from Board works and

Online animations

Worksheets and Zoom link will be posted in google classroom

Date	Lesson	Lesson objectives & Learning outcome	Mode of Teaching	
21 st March	1	L.O:		Teacher uses a
Sunday		• Describe how to measure the work done by a		ppt
(Boys)		force and understand that energy transferred		presentation to
a set a s		(joule, J) is equal to work done		discuss what is
21 st March		• Define power as the rate at which energy is		work done and
Sunday		transferred and use examples to explain this	Zoom/	how can it be
(girls)	2	definition.	GM	measured and
		• Recall and use the equation of work done and	GWI	calculated.
		power		Explains what
				is meant by
		Learning outcome: Students will be able to		power and
		Recall and use the equation linking		works out
		work done, force and distance.		numerical.

		 Explain what power means. Recall and use the equation linking power, work done and time. 		
23 rd March Tuesday (Boys) 24 th March Wednesday (girls)	5	 Use a simple kinetic theory model to explain the different states of matter (solids, liquids and gases) in terms of the movement and arrangement of particles Recall and use the equation: density (kilograms per cubic metre, kg/m²) = mass (kilograms kg) / volume (cubic metres, m³) ρ = m/V 	Zoom/ GM	Teacher introduces the different states of matter, as well as the concept of Kinetic Theory and its relationship to each states of
		 Learning outcome: Students will be able to Describe the arrangements of particles in solids, liquids and gases Use the particle model to explain the different properties of solids, liquids and gases 		matter. Also discusses what happens to particles when a substance changes state.
23 rd March Tuesday (Boys) 24 th March Wednesday (girls)	6	 Explain the differences in density between the different states of matter in terms of the arrangements of the atoms or molecules. Describe that mass is conserved during change of state and how physical changes differ from some chemical changes. 		Teacher uses a animation to explain the difference in the density of
		 Changes Learning outcome: : Students will be able to Use the particle model to explain why solids, liquids and gases have different densities Describe what happens to the mass of a substance when it changes state 	Zoom/ GM	different states of matter and discusses how to find the density of different substances
25 th March Thursday (Boys) 25 th March Thursday (Girls)	1	L.O: Solve the worksheet posted GC Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by solving the worksheet	GC	Teacher will post the worksheet in the GC Students will solve and turn in the worksheet

YEAR 12 A/B -PHYSICS

WEEK 30 (21st March to 25th March) - (3 lessons)

Work sent to the students through: Google classroom / Zoom Learning Platform

Topic: Optics

Resources: Student text book, worksheet file, interactive power point from Board works and

Online PHET simulations

Date	Class	Lesson	Lesson objectives & Learning outcomes	Mode of teaching	
21 st March Sunday 23 rd March Tuesday	12 A 12 B	6	Learning objectives: Recognize situations where total internal reflection is used. Learning Outcomes: Complete an activity involving TIR of 90°-45°-45° glass prisms. Discuss the advantages of TIR prisms as reflectors over mirrors. Realise the Uses of Fibre Optics in 1. Illuminating models or road signs using only one bulb 2. Endoscopy - seeing down inside a patient's body 3. Communications – sending	GC	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives
22 nd March Monday 25 th March Thursday	12 A 12B	3	Learning objectives: Identify refraction in dispersion of white light in a prism. Learning Outcomes: Predict the path of the light rays during dispersion.	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives
22 nd March Monday 25 th March Thursday	12 A 12B	2	Learning objectives: Explain the different angles of deviation of colours. Learning Outcomes: Use Snell's law and n = 1/SinC in problems. complete the worksheet questions	Zoom	. Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives

YEAR 12 A/B – PHYSICS

WEEK 30 (21st March to 25th March) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: 5.24 Wave interference

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date & Class	Lesso n	Lesson objectives & Learning outcomes	Mode of teaching	
21 st March Sunday - 12 B 23 rd March Tuesday - 12 A	6	 L.Objective – Show an understanding of experiments that demonstrate two-source interference using light. Learning outcome: Discuss and list the conditions needed for a two source interference pattern Discuss the experimental set up and approximate distances for interference with light – Young's double slit experiment. https://www.youtube.com/watch?v=MDX3qb BMs4 	Zoom	Teacher use simulations and video to explain the experimental set up for Young's double slit experiment.
21 st March Sunday - 12 B 25 th March Thursday - 12 A	7	 L.Objective - Describe the interference pattern produced by coherent light passing through two narrow close slits. Learning outcome: Use an interactive program/video using different colour laser pens and slits of different widths to show the effect of changing any variable in the equation. Solve problems using the equation λ = xd/D for double-slit interference using light 	Zoom	Worksheet given in two levels to practise the application of the formula $\lambda = xd/D$
24 th March Wednesday - 12 B 25 th March Thursday - 12 A	3 2	 L.Objective – Plan an experiment to determine the wavelength of the light from a laser pen. (Young's double slit experiment) Learning outcomes- Design an experiment to investigate the interference pattern produced by coherent light passing through two narrow close slits. Identify the appropriate apparatus. Plan the procedure. State how the results will be used. Consider the uncertainties involved. 	Zoom	Breakout session in groups to plan the experiment to determine the wavelength of the light using Young's double slit experiment.

HOMEWORK: Complete the exam style questions from worksheet.