YEAR 9 A - F - PHYSICS

WEEK 41 (6th June to 10th June)

Work Sent to the students through Google classroom

Topic: 5c - Lenses

Resources: Student text book, Worksheet, GCSE science free lesson video, power point.

Date	Lesson	Lesson objectives & Learning outcomes	Mode of Teaching	
6 th June Sunday (Girls) 6 th June Sunday (Boys)	8	Learning objectives: Recall the important terms used in lens. Investigate the focus and focal length of converging lens Learning Outcomes: Be able to state the meaning of focal length, focus, and principal axis Describe the effects of convex lenses on parallel beams of light.	Zoom	Teacher uses power point presentation to familiarize the students with the terminology associated with the lens.
8 th June Tuesday (Girls) 10 th June Thursday (Boys)	5	Learning objectives: Construct ray diagrams to show the formation of images by converging lens. Relate the power of the lens to its focal length and shape. Learning outcomes: Draw ray diagrams to show the nature of the images formed by a converging lens when the object is at different distances from the lens.	Zoom	Teacher uses power point presentation or animation to show the formation of images
8 th June Tuesday (Girls) 10 th June Thursday (Boys)	6	Learning objectives: To solve the worksheet on lenses Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by solving the worksheet		Teacher will post the worksheet in GC

YEAR 10 A - F - PHYSICS

WEEK 41 (6th June to 10th June)

Topic: Particle Model

Lesson Objective: SP14 d Gas temperature and pressure

SP14 e Gas pressure and volume

Resources: Student text book, worksheet file, interactive power point from Board works and

Online animations

Worksheets and Zoom link will be posted in google classroom

Date	Less on	Lesson objectives & Learning outcome	Mode of Teaching	
6 th June Sunday (Boys) 6 th June Sunday (girls)	2	 L.O: Explain the effect of changing the temperature of a gas on the spread of its particles and hence on the pressure produced by a fixed mass of gas at constant volume (qualitative only) Learning outcome: Interpret the temperature of a gas in terms of the motion of its molecules Realise that higher the temperature, the faster the particles move in a gas. Explain how the motion of the molecules in a gas is related both to its temperature and its pressure Explain the relationship between the temperature of a gas and its pressure at constant volume (qualitative only) 	Zoom/ GM	Teacher uses power point presentation that contains interactive questions
8 th June Tuesday	5	L.O: To investigate how the temperature of ice changes as it melts.		
(Boys) 9 th June Wednesday (girls)	5	 Learning outcome: Know the safety measures to do the experiment safely Present results as a line graph and interpret it Evaluate how well the experiment works. 	Zoom/ GM	The teacher will provide the secondary data to plot the temperature and time graph

8 th June Tuesday (Boys) 9 th June Wednesday (girls)	6	LO: To find specific heat capacity of water. Learning outcome: • Know the safety measures to do the experiment safely • Record the result by doing the experiment virtually • Identify the errors in the experiment	Zoom/ GM	Teacher gives instructions to record the required data using the online link
10 th June Thursday (Boys)	4	L.O: Explain the effect of changing the volume of a gas on the rate at which its particles collide with the walls of its container and hence on the pressure produced by a fixed mass of gas at constant temperature		
10 th June Thursday (girls)	1	 Explain that gases can be compressed or expanded by pressure changes Explain that the pressure of a gas produces a net force at right angles to any surface. Use the equation P, x V, = P₂ x V2 to calculate pressure or volume for gases or fixed mass at constant temperature. Explain why doing work on a gas can increase tits temperature, including a bicycle pump. 	GC	Teacher uses power point presentation that contains interactive questions

YEAR 11 A - F - PHYSICS (GCSE)

WEEK 41 (6th June to 10th June)
Topic: Base units and derived units

Lesson Objective: Describe the concept base units and derived units.

Research on the topic Are Aliens Real?

Resources: Worksheets, interactive power point and online simulations

Date	Lesso n	Торіс	Mode of Teach ing	
7 th June Monday (Boys) 6 th June Sunday (Girls)	3	LO- Describe the concept base units and derived units. Learning Outcome- Understand the concept base units and derived units with examples. Use and apply the concept.	Z	Teacher uses power point presentation to describe the concept base units and derived units.
8 th June Tuesday – (boys) 7 th June Monday – (girls)	1&2	LO- Solve worksheet questions based on the topic base units and derived units. Learning outcome Apply the concept by solving the questions.	Asy	Instruction will be given to solve worksheet questions
9 th June Wednesda y – (boys) 9 th June Wednesda y– (girls)	7	LO- Discuss worksheet questions based on the topic base and derived units. Learning outcome Apply the concept of base and derived units	Z	Teacher uses power point presentation to discuss the worksheet questions.
10 th June Thursday – (boys) 10 th June Thursday – (girls)	3	LO- Research on the topic Are Aliens Real? Learning outcome Collect the information by researching the topic.	Asy	Instruction will be given in the Google class room https://bbc.in/2V KbcVB Write a short note on your opinion and submit it in GC

YEAR 11 G/H – PHYSICS (IGCSE)

WEEK 41 (6th June to 10th June)

Topic: Base units and derived units

Lesson Objective: Describe the concept base units and derived units

Research on the topic Are Aliens Real?

Resources: Worksheets, interactive power point and online simulations

Date	Lesson	Learning objective and Success Criteria	Mode of teaching	
7 th June Monday (boys &girls)	8	LO- Describe the concept base units and derived units. Learning Outcome- Understand the concept base units and derived units with examples. Use and apply the concept	Zoom/GM	Teacher uses power point presentation to describe the concept base units and derived units.
8 th June Tuesday (boys & girls)	7 & 8	LO- Solve worksheet questions based on the topic base units and derived units. Learning outcome Apply the concept by solving the questions.	Asy	Instruction will be given to solve worksheet questions.
9 th June Wednesd ay (boys & girls)	8	LO- Discuss worksheet questions based on the topic base units and derived units. Learning outcome Apply the concept of base units and derived units.	Zoom/GM	Teacher uses power point presentation to discuss the worksheet questions.
10 th June Thursday (boys & girls)	2	LO- Research on the topic Are Aliens Real? Learning outcome Collect the information by researching the topic.	Asy	Instruction will be given in the Google class room https://bbc.in/2VK bcVB Write a short note on your opinion and submit it in GC

YEAR 12 A/B – PHYSICS

WEEK 41 (6th June to 10th June)

Topic: QUANTUM PHYSICS

Resources: Student text book, worksheet file, interactive power point from Board works and

Online PHET simulations

Date	Class	Lesson	Lesson objectives & Learning outcomes	Mode of teaching	
June 6 th Sunday	12 A	8	Learning objectives: Describe and explain inverse square law of radiation. Define a quantum of energy as photon. Learning Outcomes:	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives
			Define Intensity &Use $I = P/A$ in numerical problems. Use the equation $\Phi = P/4\pi r^2$ &Use $I_1d_1^2 = I_2d_2^2$ in numerical problems Identify a photon as a quantum of energy of electromagnetic radiation. Use the equation $E = hf$ and $E = hc/\lambda$ to calculate the photon energy. States that $E = hf$ or $E = hc/\lambda$ connects both wave and particle theory.		
June 7 th Monday June 8 th Tuesday	12 A 12B	6	Learning objectives: Describe and explain photoelectric effect. Construct and use Einstein's photoelectric equation. Relate K.E of photoelectrons and frequency of incident radiation Describe the variation of photocurrent with both positive and negative applied voltage.	Zoom	Teacher uses power point presentation and breakout sessions for students to collaborate and attain the objectives

			Learning Outcomes: Predict the effect of increasing the frequency of incident light or using different metals Predict the effect of varying incident intensity at constant frequency and varying incident frequency at constant intensity and explain why. Use the photo electric equation to calculate the velocity of photo electrons.		
June 10 th Thursday	12 B	Lesson 3	Learning objectives: Describe the variation of photocurrent with both positive and negative applied voltage.(contd) Predict the effect of varying incident intensity at constant frequency and varying incident frequency at constant intensity and explain why.(contd) Learning Outcomes: Use the photo electric equation to calculate the velocity of photo electrons.(contd)		
June 10 th Thursday	12B	Lesson 4	Learning objectives: Define stopping potential and relate stopping potential with maximum kinetic energy Learning Outcomes: Investigate photoelectric effect using photocell. Realise that greater the K.E greater the stopping potential. Use eV _s = K.E in numerical problems. Identify the features of stopping potential against frequency graph and interpret its gradient.		

YEAR 12 A/B – PHYSICS

WEEK 41 (6th June to 10th June) - 3 lessons for both batches

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: 5.23 Diffraction

Resources: Student text book, worksheet file, interactive power point from Board works and Online animations

Date & Class	Lesson	Lesson objectives & Learning outcomes	Mode of teaching	
6 th June Sunday - 12 B 8 th June Tuesday - 12 A	6	 L.Objective – Describe the principle of a diffraction grating. Able to use n λ = d sinθ for a diffraction grating Learning outcomes- Describe the effect of passing coherent light through a grating. Derive the grating equation nλ = d sin θ. 	Zoom	Teacher use simulations and video to explain the the principle of diffraction grating
6 th June Sunday - 12 B 10 th June Thursday - 12 A	7	 L.Objective – CORE PRACTICAL 8: Determine the wavelength of light from a laser or other light source using a diffraction grating. Learning outcome: Plan an experiment with grating to determine the wavelength of light. Explain what limits the number of orders of diffraction that will be visible Realise that a grating can show the range of wavelengths in white light. Identify the significance of diffraction experiments in establishing the wave model of light and other electromagnetic waves. 	Zoom	Teacher uses power point presentation and simulations to explain the expt using diffraction grating and helps students to attain the objectives.
9 th June Wednesday - 12 B 10 th June Thursday - 12 A	3 2	Learning Objective: Complete the worksheet posted in GC Learning outcome: Students will be able to reinforce the concepts learned in the previous lesson by completing the worksheet.	GC	Instruction will be given to complete the worksheet.

HOMEWORK: Complete the exam style questions from worksheet.

YEAR 13A/B-PHYSICS

WEEK 41 - 6th June to 10th June

Work sent to the students through: Whatsapp group / Google classroom / Zoom Learning Platform

Topic: - Research work on application of various topics covered during the course of study.

Resources: Student text book, interactive power point, and online

Date	Class	Lesson	Lesson objectives & Learning outcome	Mode of teaching	
8 th June Tuesday	13 A 13 B	5	L.O – Appreciate how Particle physics has revolutionized the way we look at the universe and made a significant impact on various fields of science Learning Outcome: Students present their work on the research done last week on how Particle physics technologies are applied in various fields: medical science; information technology and electronics; life sciences and engineering.	Zoom	Students present report or prepare a PowerPoint presentation.
7 th June Monday 10 th June Thursday	13 A 13 B	1, 2 3,4	L.O – Understand that misconceptions are beliefs which contradict accepted scientific theories Learning Outcome: Explore on the Structure of knowledge and Students' misconceptions in Physics. Group work given to describes misconceptions from all areas of physics, from mechanics, thermodynamics, optics, to the theory of relativity, quantum-physics and astronomy.	Zoom	Guidelines will be provided through Google classroom Discuss the students misconception in various areas of physics

YEAR 13 A/B – PHYSICS

WEEK 41 (6th June to 10th June)

Work sent to the students through: Zoom Platform and Google classroom

Topic: Resonance

Date	Clas	Less	Lesson objectives &	Mode of	
	S	on	Learning outcome	teaching	
June 7 th			Learning objectives:		Teacher uses
Monday	13 B	6	Describe, qualitatively, how		power point
_ th			damping affects resonance.	Zoom	presentation and
June 8 th	12.4		Learning Outcomes:		breakout
Tuesday	13 A	4	Explain how damping and the		sessions for students to
			plastic deformation of ductile		collaborate and
			materials reduce the amplitude		attain the
			of oscillation		objectives
			Learning objectives:	GC	o o journe
June 7 th	13 B	7	Differentiate between light,		Students turn in
Monday			heavy, critical and over		the graphs at the
			damping		end of the
June 10 th			Learning Outcomes:		lesson.
Thursday	13 A	1			
			Construct graphs to		
			differentiate between the		
			light, heavy, critical and over		
			damping		
th			Learning objectives:	Asynchro	Students turn in
June 9 th	13 B	3	Read the passage on	nous	the worksheet in
Wednesday			The Millennium Bridge opened on 10 June 2000		GC
June 10 th	13 A	2			
Thursday	13 A	<u> </u>	Learning Outcomes :		
Indisday			Answer the questions to		
			discuss how the tuned mass		
			dampers reduce the amplitude		
			of the oscillations of the bridge		
			and explain why they must be very heavily damped.		
			very neavity damped.		
		l			